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Preface

Clay is a commonly occurring porous material that is frequently used in engineering
endeavors, but there are also other important porous materials, such as those used in
some types of electrodes and as catalysts. Porous media should be examined giving
due regard to both the physics and chemistry of the constituents. The purpose of this
book is to present an approach that examines porous media from both these aspects,
outlining a procedure that combines microscale (or even nanoscale) characteristics
with macroscale behavior.

A fundamental outline of mechanics (or physics) and chemistry, including
thermodynamics, is provided in Chap. 2, Introduction to Continuum Mechanics;
Chap. 3, Non-equilibrium Thermodynamics and Chap. 4, Virtual Work Equation,
Variational Methods and Energy Principles.

In Chap. 5, Classical Theory of Diffusion and Seepage Problems in Porous Media
and Chap. 6, Classical Theory of Consolidation for Saturated Porous Media we
review and re-organize the classical soil mechanics in terms of modern continuum
mechanics; looking at the mass conservation law for a multi-component solution,
we show that the diffusion field is strictly connected with the seepage field.

The central results for saturated porous media are given in the following chapters:
In Chap. 7, Introduction to Homogenization Analysis, a one-dimensional (1D)
elastic problem is used and the fundamental notion of the homogenization analysis
(HA) is outlined, giving a unified procedure for treating a micro-inhomogeneous
material, not only in the micro-domain but also in the macro-domain. In Chap. 8,
Homogenization Analysis and Permeability of Porous Media, we use Stokes’
equation, and then apply the HA scheme to obtain the seepage equation together
with the HA-based Darcy’s law. Using this procedure we can obtain the true
velocity and pressure fields in the micro-domain. A relationship between the HA
seepage theory and the conventional theory is discussed. Note that the distribution
of water viscosity in the interlayer space between clay minerals is obtained using a
molecular dynamics (MD) simulation. A diffusion problem in bentonite, including
adsorption at the clay edges is discussed in Chap. 9, Homogenization Analysis for
Diffusion Problem in Porous Media. The distribution of the diffusion coefficient in
the micro-domain (i.e., the interlayer space between clay minerals) is calculated
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using MD, and the macroscale diffusivity obtained by HA is significantly similar to
that obtained experimentally. The purpose of Chap. 10, Long-term Consolidation of
Bentonite and Homogenization Analysis of the Flow Field, is to analyze the problem
of secondary consolidation of bentonite, which is frequently observed in long-term
experiments. This phenomenon was considered to be the result of time-dependent
deformation such as creep of the solid skeleton of bentonite. However, we show
that the secondary consolidation is caused by a non-homogeneous distribution of
permeability, which occurs as a result of a change in the crystalline structure during
the consolidation process. This result was verified by a series of X-ray diffraction
analyses, that continuously measured the crystalline structure at each point of a
bentonite specimen.

In the Appendices we outline the essential mathematics and classical thermody-
namics, including some chemistry. The section on thermodynamics is referred to in
Chap. 3.
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Chapter 1
Introduction

1.1 Transport Phenomena in Porous Media and Modeling

Porous materials can be both natural and artificial. Such materials are encountered in
a wide range of problems dealing with engineering, agriculture and science: Natural
materials include soil and rock, and artificial materials can include membrane
materials and catalysts used in chemical engineering, etc. We have applied the
principles of continuum mechanics to analyze the behavior of these materials.

In continuum mechanics we describe the averaged behavior of a large ensemble
of atoms/molecules. We replace the set of discrete particles of molecules by a con-
tinuum subset of the n-dimensional real number system R

n, and apply physical laws
pertaining to conservation of mass, linear momentum, moment of linear momentum
and energy. For example, one mole of carbon (12C) corresponding to 12 g consists
of 6:0223 � 1023 atoms, thus it is rational to introduce a continuum hypothesis
for describing these materials. We derive a system of governing equations by
assuming that the rate of change of these conservation processes (e.g., mass, linear
momentum, moment of linear momentum and energy) is equivalent to a flux, which
flows into the system (e.g., mass flux, force, moment and heat flux) and a source,
which is generated in the system.

The material parameters encountered in these governing equations are deter-
mined through experiments. However, more recently, molecular simulation-based
computational methods have been applied; even for cases with extremely difficult
physical and chemical configurations, we can obtain a set of material properties if
we have the correct molecular model. For example, we can determine the material
properties (at each point, if desired) for a micron-order (1�m = 10�6 m) or nano-
order (1 nm = 10�9 m) material, which is referred to as a micro-inhomogeneous
material. Then we can introduce a mathematical procedure that gives a perspective
of the microscale and macroscale characteristics.

The detailed procedure will be discussed in subsequent chapters; however it is
important to follow these steps:

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
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2 1 Introduction

• Correctly prescribe the conservation laws.
• Represent the conservation law in a mathematically correct manner.
• Introduce accurate experimental or simulation methods in order to determine the

material parameters.
• Solve the equations using, e.g., the finite element method, taking into account the

convergence and stability of the scheme employed.

1.2 Molecular Dynamics Simulation and Homogenization
Analysis

In the framework of continuum mechanics, the material properties have mainly been
determined through experiments using specimens of sufficiently large dimensions
in comparison to the dimensions of any inherent fabric. This is particularly true
for micro-inhomogeneous materials where the specimen is large compared to the
size of this local structure. This procedure, which provides the system of governing
equations and the experiment-based material properties, is referred to as the macro-
phenomenological scheme.

If we use the macro-phenomenological approach, we do not include the intrinsic
properties, which represent the movement at a molecular-level. In this sense
it is a difficult procedure to establish a correct system of governing and con-
stitutive equations. For example, if we consider the experimental results for a
micro-inhomogeneous material, we frequently observe differences if the specimen
size is changed. The experimental results are only intrinsically true for the size
range of that experiment. In this sense, the macro-phenomenological scheme is
interpolation-based.

The high-level radioactive wastes (HLW’s) produced at nuclear power plants
must be isolated from the population for an extremely long time, i.e., more than
10,000 years. There are plans to construct HLW disposal facilities in deep under-
ground repositories. Thus, the safety of the barrier system must be evaluated for
time scales in excess of 10,000 years; this is beyond the scope of any conventional
scientific experiment-based approach. We need to use an alternative method that is
based on a macro-phenomenological approach.

All materials consist of particles, i.e., atoms and/or molecules. It is possible
to determine the forces that act on these particles by using the modern scientific
techniques of quantum mechanics and chemical-bond models. Molecular simulation
methods provide material properties as a set of particle behaviors under the above
chemical-bond forces (Allen and Tildesley 1987; Ueda 1990; Kawamura 1990): The
Molecular Dynamics method (MD; Fig. 1.1) solves the equation of motion directly
in a finite difference scheme, using a very short time step, i.e., less than 1 fs (femto-
second; 1 fs = 10�15 s). The Monte Carlo Method (MC) calculates a probability of
occurrence of the particle configuration. Note that since the Molecular Mechanics
Method (MM) does not treat the behavior of a molecular group, we exclude MM
from the molecular simulation methods.
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Fig. 1.1 Concept of MD simulation (Ueda, 1990)

Molecular simulations allow scientists to predict future occurrences with some
accuracy. However in the foreseeable future it is virtually impossible to consider the
sample size of the bentonite buffer that will be used in the HLW repositories using
molecular simulation methods. One cc of water has about 0:3 � 1023 molecules
and bentonite can absorb more water than the volume of the solid crystals. Even
the most-advanced parallel processor computer can only simulate about a hundred
million particles. The elapsed time is also limited since we can obtain the results
for at most 1 ns (=10�9 s). Thus, the use of molecular simulations to forecast events
that might ‘occur’ in, for example, nuclear waste repositories is limited by computer
resources.

A mathematical scheme that can treat a micro-inhomogeneous material uni-
formly at the microscale and the macroscale is referred to as Homogenization
Analysis (HA) (see Sanchez-Palencia 1980; Bakhvalov & Panasenko 1984). In the
HA method, we introduce a perturbation scheme by using both a macroscale
coordinate system and a microscale one, and derive a microscale equation, which
represents the geometry and material properties in the micro-domain. Then, using
the solution of the microscale equation, we determine the macroscale equation
(Fig. 1.2). However, since the HA method is implemented within a framework of
continuum mechanics, it also experiences difficulties when the material properties
of micro-inhomogeneous materials need to be obtained.

We have recently developed a new scheme that combines the MD simulation and
the HA method to account for the behavior of bentonite clay, which is a nano-scale
micro-inhomogeneous material (Ichikawa et al. 1998; Fig. 1.3).

In the MD/HA method, we obtain a local distribution of material properties using
MD simulation, and introduce these material properties into the HA procedure. The
MD/HA method overcomes the shortcomings that are inherent in both the MD and
HA methods. The characteristic abilities of the MD/HA method are as follows:

1. We can simulate the micro-/macro-behaviors of micro-inhomogeneous materials
on the solid basis of physical and chemical laws.
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Fig. 1.2 Concept of the homogenization analysis (HA)

Fig. 1.3 Schematical diagram of the MD/HA method

2. We can predict the material behavior under extreme environments, such as high
temperature, high pressure and long elapsed time, which are difficult to assess if
we use only a classical macro-phenomenological theory.

3. Using this analytical scheme we may be able to find the true physical/chemical
mechanism of complex phenomena, such as water movement in clay under
heating.

4. We may be able to find the most appropriate conditions for an engineering
process through parametric studies.

We have applied the MD/HA method to bentonite, and have uncovered the
mechanisms involved in the extremely low permeability, delayed diffusion and
secondary consolidation (Ichikawa et al. 2002, 2004); water molecules close to the
clay mineral surface are strongly constrained due to the charged state of the mineral,
and the clay minerals themselves form a nano-order of stacked structure.
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1.3 Underground Disposal of HLW’s and Bentonite

There are plans to dispose of HLW’s produced from nuclear power plants in deep
underground repositories sited several hundred meters deep (Fig. 1.4). The HLW’s

Fig. 1.4 A concept for HLW disposal
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are classified into two groups; (1) spent fuel and (2) reprocessed effluent and
its vitrified solid (i.e., vitrified waste). The fundamental plan of the Japanese
government is to reprocess spent fuel to achieve efficient use of the uranium
resources. The vitrified wastes are then kept in a surface facility for about 30 � 50

years to allow cooling and the reduction in the radioactivity. Each waste form is
then encapsulated in a metal overpack (e.g., steel) and is placed in rock surrounded
by a bentonite buffer as shown in Fig. 1.4. Thus the complete barrier system, which
prevents radionuclide migration for a long period, forms both an engineered barrier
system (EBS, consisting of the vitrified waste, a metal overpack and bentonite
buffer) and a natural barrier, i.e., the rock mass.

The radioactivity of HLW’s lasts for several thousands years before its
radioactivity reduces to the level of natural uranium ore, because it includes long-
lived fission products (FP’s) and transuranium nuclides (TRU’s). The radionuclides
released from the stored waste can be transported via ground water flow from the
repository. Scientifically, it is difficult to prove the safety of a HLW disposal facility
because the long time scale involved is beyond human experience.

Bentonite is the key material of the EBS, which retards the transport of
radionuclides. This is because (1) it is an extremely low permeable material, which
prevents movement of water and eventually radionuclides, (2) it seals cracks in the
rock mass because of its swelling properties, and (3) it shows a high ability for
cation adsorption, therefore it can retard the migration of radionuclides.

At the microscale level bentonite is a micro-inhomogeneous material, which
consists of smectic clay minerals and macro-grains, mainly quartz, water and air
(Fig. 1.5). The composition of Kunigel V1 R�, which is a candidate buffer material
for the Japanese proposals for HLW disposal, and its purified Kunipia F R�, is shown
in Table 1.1.

The main component of bentonite is smectic clay, such as montmorillonite and
beidellite, and the unique properties mentioned above are due to the properties of
these smectic clays (Pusch et al. 1990).

Fig. 1.5 Schematic diagram of micro-structure of bentonite
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Table 1.1 Compositions of bentonite (Ito et al. 1993)
Montmori- Quartz� Feldspar Calcite Dolomite Analcite Pyrite Organics

llonite Chalcedony

Kunigel V1 R� 46 � 49 29 � 38 2:7 � 5:5 2:1 � 2:6 2:0 � 2:8 3:0 � 3:5 0:5 � 0:7 0:31 � 0:34

Kunipia F R� 98 � 99 <1 – <1 – – – –

Unit [wt%]

Fig. 1.6 Crystalline structure of montmorillonite

A schematic diagram of the crystalline structure of montmorillonite is shown in
Fig. 1.6. The platelet crystal is formed by a sandwich structure consisting of two
SiO tetrahedral sheets and one AlO/AlOH octahedral sheet. The Al atom of the
octahedral sheet is frequently replaced by other elements, such as Mg, and therefore
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a b

Fig. 1.7 Microphotographs of compacted Kunipia Fr (a) by a laser scanning confocal micro-
scope, and (b) by a transmission electron microscope

the crystal surface is always negatively charged. Several of these crystals combine
to form a stack.

An ideal structure of the montmorillonite crystal is given by

.Na;K;Ca;Mg/0:33.Al1:67Mg0:33/Si4O10.OH2/:

In general, the chemical composition of smectic clay minerals shows that they
belong to the aqueous aluminum silicates, and the Al atom is frequently replaced by
Mg, Fe, Na, Ca, K, etc., and the surface of the crystal is always negatively charged as
mentioned above. Exchangeable cations such as NaC, Mg2C, Ca2C, etc., exist in the
interlayer space of the crystal stack in order to compensate for the charge; bentonite
that has the major interlayer cation NaC is called the Na-type. There are two kinds of
bentonite; the almost natural one that has been crushed after mining (e.g., Kunigel
V1r), and a purified form composed of almost pure smectic clays (e.g., Kunipia
Fr). Microphotographs taken by a laser scanning confocal microscope and by a
transmission electron microscope are shown in Fig. 1.7; we can observe the micro-
structure of the Kunipia Fr and the amount of clay stacks.



Chapter 2
Introduction to Continuum Mechanics

The mechanics of a deformable body treated here is based on Newton’s laws
of motion and the laws of thermodynamics. In this Chapter we present the
fundamental concepts of continuum mechanics, and, for conciseness, the material is
presented in Cartesian tensor formulation with the implicit assumption of Einstein’s
summation convention. Where this convention is exempted we shall denote the
index thus: .Š˛/.

2.1 Newtonian Mechanics

Newtonian mechanics consists of

1. The first law (The law of inertia),
2. The second law (The law of conservation of linear momentum), and
3. The third law (The law of action and reaction).

Newton’s first law defines inertial frames of reference. In general it can be
described as follows; “if no force acts on a body, it remains immobilized or in a
state of constant motion”. However, if this is true, the first law is obviously induced
by the second law,1 and the laws might be incomplete as a physical system. We must
rephrase the first law as follows:

The First Law: If no force acts on a body, there exist frames of reference, referred
to as inertial frames, in which we can observe that the body is either stationary or
moves at a constant velocity.

1In the second law (2.2) if we set fD 0 and solve the differential equation, we obtain v D constant
since mD constant, which suggests that the first law is included in the second law. This apparent
contradiction results from the misinterpretation of the first law.

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 2, © Springer-Verlag Berlin Heidelberg 2012
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We now understand that the first law assures the existence of inertial frames, and
the second and third laws are valid in the inertial frames. This is the essence of
Newtonian mechanics.

Letm and v be the mass and velocity of a body, respectively, then the momentum
p is given by

p D mv: (2.1)

We now have the following:

The Second Law: In an inertial frame, if a force f acts on a body, the following
law of conservation of linear momentum is valid:

dp
dt

D d.mv/
dt

D f (2.2)

Since the mass m is conserved in Newtonian mechanics, (2.2) can be rewritten as

m
dv
dt

D f : (2.3)

Let us consider a material point which is represented by two different frames as
.x; t/ and .x�; t�/ where x; x� denote positions and t; t� denote time. Under the
Galilean transformation given by

x� D Qx C V t; t� D t C a; (2.4)

both frames form the equivalent inertial frames (Fig. 2.1). This is referred to as the
Galilean principle of relativity. HereQ is a time-independent transformation tensor
(cf. Appendix A.3), V is a constant vector and a is a scalar constant.

The Galilean transformation (2.4) gives, in fact, the condition which results in
the law of conservation of linear momentum (2.2) in both the frames .x; t/ and
.x�; t�/. That is, differentiating (2.4) yields

v� D dx�

dt�
D Q

dx

dt
C V D Qv C V

Fig. 2.1 Galilean
transformation
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and the force vector f is transformed in the same manner:

f � D Qf : (2.5)

The mass conservation law is m� Dm, and (2.5) suggests that the law of conserva-
tion of linear momentum is satisfied in the inertial frames in the following manner:

f � D m� dv�

dt�
D m

d.Q v C V /

dt
D Q

�

m
dv
dt

�

D Qf : (2.6)

Note that the force vector represented in the form of (2.5) is a fundamental
hypothesis of Newtonian mechanics (i.e., the frame indifference of a force vector;
see Sect. 2.2.2). The third law gives the interacting forces for a two-body problem,
and this will not be treated here.

Note 2.1 (Inertial frame and the relativity principle). The first law (i.e., the law of
inertia) gives a condition that there are multiple frames of equivalent inertia that
are moving under a relative velocity V . Therefore, the first law guarantees that the
second law (i.e., the law of conservation of linear momentum) is realized in any
inertial frame. This implies that the second law is not always appropriate in different
frames of reference, which are moving under a general relative velocity. In fact, in
an accelerated frame that includes rotational motion, such as on the surface of Earth,
there is a centrifugal force and a Coriolis effect. In Sect. 2.2.2 we will treat a general
law of change of frame, which is related to a constitutive theory that describes the
material response (see Sect. 2.8).

If the relative velocity V of the Galilean transformation (2.4) approaches the
speed of light c, the uniformity of time is not applicable, and the Newtonian
framework is no longer valid. That is, the Galilean transformation is changed
into the Lorentz transformation under invariance of Maxwell’s electromagnetic
equations, and the equation of motion is now described in relation to Einstein’s
theory of relativity. �

2.2 Deformation Kinematics

When we consider the motion of a material body, constituent atoms and molecules
are not directly taken into consideration since this will require an inordinate amount
of analysis. Therefore we represent the real material by an equivalent shape of a
subdomain of the n-dimensional real number space R

n, and apply the Newtonian
principles to this image. This procedure leads to Continuum Mechanics; the term
‘continuum’ is a result of the continuity properties of the n-dimensional real number
space Rn.



12 2 Introduction to Continuum Mechanics

2.2.1 Motion and Configuration

Consider a material point X in the body B, and we have an image in the
n-dimensional real number space Rn that is referred as a configuration.2 We choose
the configuration,X.X/ 2 
0 � R

n, at the time tD t0 as a reference configuration,
and treat the subsequent deformation and motion of the current configuration,
x 2 
 � R

n, at the time t D t with respect to the reference configuration (Fig. 2.2).
Assume that a reference point X 2 
0 moves to the current point x 2 
. The

motion is represented as
x D x.X ; t/ (2.7)

Note that the time change x.X ; t/ of a specific point X gives a trajectory. Then the
velocity of the material point is calculated by

v.X ; t/ D dx

dt
.X ; t/ (2.8)

Fig. 2.2 Motion and deformation of a material body

2‘Configuration’ is defined as an invertible continuous function that maps every material point
X 2 B to a point z in a subset of the n-dimensional real number space R

n. A time-dependent
motion is considered; therefore the configuration is a function of the material point X and
time t . The configuration at a given time t0 is set as a reference configuration �, and the
point X 2 R

n corresponding to a material point X is written as X D �.X/; X D ��1.X /

where ��1 is an inverse mapping of �. The current configuration � at time t maps X to
x 2 R

n as xD�.X; t/; X D��1.X; t /. The composite function �� D� ı ��1 is introduced as
xD�.��1.X /; t /D�� D� ı ��1.X; t /D��.X; t /. The function �� gives a mapping between
the position vector X in the reference configuration and the position vector x in the current
configuration. Since this formal procedure is complicated, the above simplified descriptions are
employed.
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We should pay attention to the fact that the velocity v has a simple differential form
of (2.8) with respect to t , since x.X ; t/ is a function both of X and of t but X is a
fixed frame of reference.

Two material points can never occupy the same position, therefore (2.7) has a
unique inverse:

X D X.x; t/ (2.9)

This relation permits the definition of the velocity v.X ; t/; this can be written as a
function of x and t :

v.X.x; t/; t/ D v.x; t/: (2.10)

We can generalize this procedure: If a function � is represented in terms of
.X ; t/, we call it the Lagrangian description, and if � is given in terms of .x; t/, it is
the Eulerian description. The choice of the form is arbitrary but will be influenced
by any advantage of a problem formulation in either description. For example,
in solid mechanics, the Lagrangian description is commonly used, while in fluid
mechanics the Eulerian description is popular. This is because in solid mechanics
we can attach labels (e.g., visualize ‘strain gauges’ at various points) on the surface
of a solid body, and each material point can be easily traced from the reference
state to the current state. On the other hand for a fluid we measure the velocity
v or pressure p at the current position x, therefore the Eulerian description better
represents the fluid (note that for a fluid it is difficult to know the exact reference
pointX corresponding to all the current points x).

The coordinate system with the basis fEI g .I D1; 2; 3/ for the undeformed body

0 is usually different from the coordinate system with the basis feig .iD1; 2; 3/

that describes the deformed body
 in the current configuration (Fig. 2.2):

X D XIEI ; x D xiei : (2.11)

fEI g; fei g represent the orthogonal coordinate systems (i.e., Cartesian); we will
employ the same orthogonal coordinate systems fEI gDfei g for simplicity unless
otherwise mentioned. Then, the position vectorsX and x can be written as

X D Xiei ; x D xiei

Let �.X ; t/ be a Lagrangian function. Since X is time-independent, the time
differentiation P� is simply given by

P�.X ; t/ D d�

dt
: (2.12)

Here P� D d�=dt is referred to as the material time derivative of �.X ; t/. On the
other hand, for an Eulerian function �.x; t/ the total differential d�.x; t/ can be
written as

d�.x; t/ D @�

@t
dt C @�

@xi
dxi ;
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and vi Ddxi=dt , and therefore we have the following relationship between the
material time derivative and Eulerian time derivative

d�

dt
D @�

@t
C v � r�: (2.13)

Here the symbol r (called ‘nabla’) implies3

r D ei
@

@xi
: (2.14)

The second term of the r.h.s. of (2.13) gives a convective term.
The velocity v is written either in the Lagrangian form or in the Eulerian form;

therefore the acceleration a can be represented in either form:

a.X; t/ D dv
dt

D @v
@t

C v � rv D a.x; t/ (2.15)

In indicial notation (2.15) is given by

ai D dvi
dt

D @vi
@t

C vj
@vi
@vj

: (2.16)

Note 2.2 (Differentiation of vector and tensor valued functions). Let uDuiei and
T DTijei ˝ ej be vector and tensor valued functions. It is understood that the
gradients grad u; gradT can be of two forms:

grad u D

8
ˆ̂
<̂

ˆ̂
:̂

u ˝ r D @ui
@xj

ei ˝ ej ;

r ˝ u D @ui
@xj

ej ˝ ei ;

gradT D

8
ˆ̂
<̂

ˆ̂
:̂

T ˝ r D @Tij

@xk
ei ˝ ej ˝ ek;

r ˝ T D @Tjk

@xi
ei ˝ ej ˝ ek:

The former are called the right form, and the latter are the left form.

3If the gradient is used with respect to Eulerian coordinates with the basis feig, it is denoted as
(2.14). If we explicitly explain the gradient with respect to the Eulerian system, it is denoted as

grad D r x D ei
@

@xi
:

If the gradient is operated with respect to Lagrangian coordinates fEI g, it is represented as

Grad D r X D EI
@

@XI
:
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Right and left forms of divergence div u; divT and rotation rot u; rotT are
given by

div u D

8
ˆ̂
<̂

ˆ̂
:̂

u � r D @ui
@xi

;

r � u D @ui
@xi

;

divT D

8
ˆ̂
<̂

ˆ̂
:̂

T � r D @Tij

@xj
ei ;

r � T D @Tji

@xj
ei ;

rot u D

8
ˆ̂
<̂

ˆ̂
:̂

u ^ r D eijk
@ui
@xj

ek;

r ^ u D ejik
@ui
@xj

ek;

rotT D

8
ˆ̂
<̂

ˆ̂
:̂

T ^ r D ejkl
@Tik

@xl
EI ˝ ej ;

r ^ T D eikl
@Tlj

@xk
EI ˝ ej ;

In this volume we will predominantly use the right form, and we symbolically write
the right forms in the same manner as the left form: e.g.

grad u D @ui
@xj

ei ˝ ej ; gradT D @Tij

@xk
ei ˝ ej ˝ ek;

div u D @ui
@xi

; divT D @Tij

@xj
ei ;

rot u D eijk
@ui
@xj

ek; rotT D ejkl
@Tik

@xl
ei ˝ ej

In addition, if the right-divergence form of the second-order tensor T DTijei ˝ ej
is as given above, the divergence theorem (B.6) given in Appendix B.2 can be
written as Z

G

divT dv D
Z

G

r � T dv D
Z

@G

T nds:

If u and T are given as functions of the reference basis such that
uDuI .X/EI ; T DTIJ.X/EI ˝EJ , we have

Grad u D @uI
@XJ

EI ˝EJ ; GradT D @TIJ

@XK
EI ˝EJ ˝EK;

Div u D @uI
@XI

; DivT D @TIJ

@XJ
EI ;

Rot u D eIJK
@uI
@XJ

EK; RotT D eJKL
@TIK

@XL
EI ˝EJ : �
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2.2.2 Changes of Frame and Frame Indifference |

Let us consider two different points x and x0 in the current body, and introduce
a two-point vector uDx�x0 (u does not imply displacement). Then, it is easily
observed that the length j u jD .u � u/1=2 is an invariant; i.e., it has the same value
in any coordinate system. We call this property of j u j the principle of frame
indifference. The concept of frame indifference is a fundamental requirement for
a constitutive theory between, for example, stress and strain (see Sect. 2.8).

The frame indifference of the two-point vector u is proved as follows: Let us
introduce two coordinate systems, System 1 and System 2, which have bases fei g
and fe�

i g, respectively (Fig. 2.3). In the framework of Newtonian mechanics, the
two-point vector x�x0 and time t of System 1 can be related to x� �x�

0 and t� of
System 2 by

x� � x�
0 D Q.x � x0/ (2.17)

t� D t � a (2.18)

whereQDQije
�
i ˝ ej is the following coordinate transformation tensor:

e�
i D Qei : (2.19)

The tensorQ is orthonormal:

QQT D I�; QTQ D I (2.20)

where I is the unit tensor defined on System 1, and I� is that defined on System 2.
Note that a in (2.18) is a constant.4 It is understood that the length jx�x0j is invariant
under the change of frame since from (2.17) to (2.20) we have

jx� � x�
0 j2 D .x � x0/ �QTQ.x � x0/ D jx � x0j2: (2.21)

In general, a frame indifferent scalar function f is defined by

f �.x�/ D f .x/: (2.22)

The frame indifferent vector function u is given by

u�.x�/ D Qu.x/; u.x/ D QT u�.x�/: (2.23)

4Here we deal with a general case in which two coordinate systems may not be inertial systems. If
both are inertial systems, Q is time-independent as given by (2.4). Therefore, we have

x� D QxC V t; x�
0 D Qx0 C V t ) u D x� � x�

0 D Q.x � x0/;

which shows that the two-point vector u is frame indifferent.
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Fig. 2.3 Coordinate
transformation and frame
indifferent vector

A frame indifferent second-order tensor function T is characterized by the
frame indifference of a transformed vector v DT u. That is, let u be a frame
indifferent vector (u� DQu), and v and v� be the vectors corresponding to u and
u� transformed by T and T � such that

v D T u; v� D T � u�:

Then, if v� D Q v, T is said to be frame indifferent. Now we have

v� D Q� v D T � u� D T �Qu ) v D QTT �Qu:

Therefore the requirement for frame indifference of a second-order tensor T is
defined by

T D QTT �Q; T � D QT QT : (2.24)

2.2.3 Motion in a Non-inertial System |

We consider an equation of motion for the case where System 1 is inertial while Sys-
tem 2 is non-inertial. Since the two-point vector x�x0 should be frame indifferent,
satisfying (2.17) and (2.18), a position vector x�.t/ in System 2 is given by

x�.t/ D x�
0 .t/CQ.t/.x � x0/ (2.25)

where we can regard x0 as the origin of the coordinate system O , and x�
0 .t/ as the

origin of the coordinate system O� (see Fig. 2.3). Taking a material time derivative
of (2.25) and substituting the inverse relation of (2.17) gives the velocity:

v� D dx�
0

dt
C�.x� � x�

0 /CQv; (2.26)

� D dQ

dt
QT (2.27)
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The result (2.26) shows that the velocity vector v is not frame indifferent. Note
that by differentiating (2.20)1 the second-order tensor � is understood to be anti-
symmetric:

dQ

dt
QT CQ

dQT

dt
D 0 ) � D dQ

dt
QT D �QdQ

T

dt
D ��T : (2.28)

The acceleration vector is given by a material time derivative of (2.26):

a� D dv�

dt
D d2x�

0

dt2
C 2�

�

v� � dx�
0

dt

�

C
�
d�

dt
��2

�

.x� � x�
0 /CQ

dv
dt

(2.29)

This suggests that the acceleration is not frame indifferent.
Now we define a rotation vector ! with respect to the original coordinate

system by

!i D �1
2
eijk
kj D 1

2
eijk
jk (2.30)

then for any vector a we have
�a D ! ^ a (2.31)

Thus, (2.29) can be written as

dv�

dt
D d2x�

0

dt2
C d�

dt
Q.x�x0/C!^Œ! ^Q.x � x0/�C2!^QvCQdv

dt
(2.32)

The third term of the r.h.s. of this equation gives a centrifugal force and the fourth
is the Coriolis force.

As shown by (2.5), a fundamental hypothesis of Newtonian mechanics is that the
force f is frame indifferent (f � DQf ). Therefore, referring to (2.32) and (2.27),
the equation of motion in System 2, which is non-inertial, can be written as

m�dv�

dt�
D f � C f ai; (2.33)

f ai D m

�
d2x�

0

dt2
C d�

dt
.x� � x�

0 /C! ^ ! ^ .x� � x�
0 /

C2! ^
�

v� � dx�
0

dt
��.x� � x�

0 /

��

(2.34)

where f ai is an apparent inertial force observed in the non-inertial system.
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2.2.4 Deformation Gradient, Strain and Strain Rate

We distinguish between the coordinate system fEI g of the Lagrangian description
and the coordinate system fei g of the Eulerian description in order to understand the
relationship between both systems.

As shown in Fig. 2.2, an increment vector dxDdxiei of a point x 2 
 in the
deformed body 
 is related to the increment dXDdXIEI of the corresponding
pointX 2
0 in the undeformed body
0 by

dx D F dX (2.35)

where the second-order tensor F is the deformation gradient;

F D Gradx D rXx D FiI ei ˝EI ; (2.36)

FiI D @xi

@XI
; Grad D rX D EI

@

@XI
(2.37)

which relates the infinitesimal line segment dX 2
0 to the corresponding segment
dx 2 
. As observed in (2.36), the deformation gradient F plays a role in the
coordinate transformation from EI to ei . Since no material point vanishes, there is
an inverse relation of F :

F �1 D gradX D r xX D F �1
I i EI ˝ ei ; (2.38)

F �1
I i D @XI

@xi
; grad D r x D ei

@

@xi
: (2.39)

If the right form (see Note 2.2) is employed, the related forms of deformation
gradient can be written as follows:

F D @xi

@XI
ei ˝EI ; F T D @xi

@XI
EI ˝ ei ; (2.40)

F �1 D @XI

@xi
EI ˝ ei ; F �T D @XI

@xi
ei ˝EI : (2.41)

Here F �T implies .F �1/T .
Now we need to measure the extent of deformation of an elemental length located

at a material point. To do so, we compare the length jdxj with its original length jdXj
(see Fig. 2.2) by comparing the difference of both lengths as a squared measure:

j dx j2 � j dX j2 D dx � dx � dX � dX

Substituting the deformation gradient yields

dx � dx D dX � CdX ; dX � dX D dx �B�1dx
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where

C D F TF D FkIFkJ EI ˝EJ ; B D FF T D FiIFjI ei ˝ ej (2.42)

C is referred to as the right Cauchy-Green tensor and B the left Cauchy-Green
tensor. Then the deformation measure can be written as

j dx j2 � j dX j2 D dX � 2E dX D dx � 2e dx (2.43)

where we set

E D 1

2
.C � I/ D 1

2
.CIJ � ıIJ/ EI ˝EJ ; (2.44)

e D 1

2

�
i �B�1� D 1

2

�
ıij � B�1

ij

�
ei ˝ ej (2.45)

Note that IDıIJ EI ˝ EJ and iDıij ei ˝ ej are the unit tensors in the reference
and current configurations, respectively.E is referred to as the Lagrangian strain or
Green strain, and e the Eulerian strain or Almansi strain (see, e.g., Malvern 1969;
Spencer 2004).

Since the deformation gradient F is invertible and positive definite (detF > 0),
we can introduce the following polar decomposition:

F D RU D VR (2.46)

where

R D RiI ei ˝EI ; U D UIJ EI ˝EJ ; V D Vij ei ˝ ej (2.47)

R is referred to as the rotation tensor, U the right stretch tensor, V the left stretch
tensor. R is orthonormal (RTRDI ; RRT D i ), which gives the rotation of C and
B�1 to their principal axes. Under the polar decomposition we have

C D U 2; B D V 2 (2.48)

As understood from (2.48), U and V are symmetric and positive definite.

Note 2.3 (Small strain theory). In most textbooks on elasticity theory a displace-
ment vector is defined as uDx�X . However we know that xDxiei , XDXIEI
and the transformation of both bases are locally defined by the deformation gradient
F ; therefore it is difficult to introduce the globally defined displacement vector u
unless a common rectangular Cartesian coordinate system is used.

Now let us use a common basis ei and introduce an incremental form as

du D dx � dX D .F � i / dX D H dX (2.49)
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where

H D @u
@X

D F � i D .Fij � ıij/ ei ˝ ej (2.50)

Then the Green strain is given by

E D 1

2

�
H CH T CH TH

� D 1

2

�
@ui
@Xj

C @uj
@Xi

C @uk
@Xi

@uk
@Xj

�

ei ˝ ej (2.51)

Since the third term of the r.h.s. is second-order infinitesimal, the small strain
tensor is given by

"ij D 1

2

�
@ui
@xj

C @uj
@xi

�

(2.52)

where we identify the coordinates Xi with xi (Little 1973; Davis and Selvadurai
1996; Barber 2002).

The strain with components given by (2.52) is referred to as the tensorial strain,
while the strain in which the shearing components are changed into

	yz D @uy
@z

C @uz

@y
; 	zx D @uz

@x
C @ux

@z
; 	xy D @ux

@y
C @uy
@x

which can be denoted by the vector

" D �
"xx; "yy; "zz; 	xy; 	yz; 	zx

	T
(2.53)

that is referred to as the engineering strain. �

Note 2.4 (Generalized strain measure (Hill 1978)|). Since the right Cauchy-Green
tensorC DF TF is symmetric and the components are real numbers, there are three
real eigenvalues that are set as �2i .i D 1; 2; 3/ and the corresponding eigenvectors
are given by N i ; then we have

�
F TF

�
N i � �2iN i D 0; N i �N j D ıij .i W not summed/: (2.54)

Let us set a material fiber alongN i as dX i , therefore we can write

dX i D dXi N i ) �
F TF

�
dX i D �2i dX i .i W not summed/

(2.55)

where �i is referred to as the principal stretch , andN i .iD1; 2; 3/ form Lagrangian
triads. Referring (2.48)1, the right stretch tensor U can be written as

U D P

i

�i N i ˝N i : (2.56)
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The rotation tensorR given by (2.47)1 transforms the Lagrangian triadsN i into the
Eulerian triads ni :

ni D RN i ; R D P

i

ni ˝N i : (2.57)

The left stretch tensor V given by (2.47)3 can now be written as

V D P

i

�i ni ˝ ni : (2.58)

Following Hill (1978) the generalized Lagrangian strain measure is defined by

E D P

i

f .�i /N i ˝N i : (2.59)

Here f .�i / is a scale function which satisfies the conditions

f .1/ D 0; f 0.1/ D 1:

Consider the following example:

f .z/ D z2n � 1

2n
: (2.60)

We can introduce the following family of n-th order Lagrangian strain measures:

E .n/ D
X

i

.�i /
2n � 1

2n
N i ˝N i : (2.61)

The Green strain given by (2.44) corresponds to E .1/. Furthermore from (2.60) we
have

lim
n!0

.�i /
2n � 1
2n

D ln�i :

As n!0, the logarithmic strain E.0/ is given by

E.0/ D ln U D P

i

ln.�i /N i ˝N i : (2.62)

The generalized Eulerian strain measure is given by

e D P

i

f .�i /ni ˝ ni D RERT ; (2.63)

and the family of n-th order Eulerian strain measures is introduced by
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e.n/ D
X

i

.�i /
2n � 1

2n
ni ˝ ni ; e.0/ D ln V D P

i

ln.�i /ni ˝ ni : (2.64)

It should be noted that E.�1/ ¤ e.1/. �

Recall the definition of the deformation gradient dxDF dX ; its material time-
derivative defines the following velocity gradient:

P
dx D PF dX D Ldx ) L 	 PFF �1: (2.65)

Since the direct forms of PF ; F �1 are given by

PF D PFiI ei ˝EI D @vi
@XI

ei ˝EI ; F �1 D @XI

@xi
EI ˝ ei (2.66)

L can be written as

L D grad v D @vi
@xk

ei ˝ ek (2.67)

On the other hand, F F �1Di , therefore taking its material time differential with
(2.65) PF DLF yields the inverse of PF :

PF �1 D �F �1L: (2.68)

The velocity gradient L is decomposed into its symmetric part D, called the
stretch tensor or rate-of-deformation tensor, and its anti-symmetric part W , called
the spin tensor:

L D PFF �1 D D CW ; (2.69)

D D 1

2

�
LCLT

�
; W D 1

2

�
L �LT � : (2.70)

The material time differentiation of the Green strain E given by (2.44) is

PE D 1

2


 PF T
F C F T PF

�
D F TDF ) D D F �T PEF �1 (2.71)

where (2.65) is used.

Note 2.5 (Embedded coordinates |). In solids we can trace each material point X
by attaching labels on its surface during deformation. Then, as shown in Fig. 2.4, it is
easy to introduce a coordinate system in which the label values of the coordinates are
not changed (xi DXi ) but the reference basis G i (before deformation) is changed
into the current basis g i (after deformation). This is referred to as the embedded
coordinate system.
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Fig. 2.4 Embedded coordinate system

In the embedded coordinate system, the transformation rule of the base vectors
is given by

gi .t/ D F .t/G i ) F .t/ D g i .t/˝G i ; (2.72)

and the following relationships are obtained:

F �1 D G i ˝ gi ; G i D F �1gi ; (2.73)

F �T D gi ˝G i ; gi D F �TG i : (2.74)

The unit tensor in the current deformed body is written as iDı
j
i g

i ˝
gj Dıij gi ˝gj Dgij g

i ˝gj Dgijgi ˝gj , and the right Cauchy-Green tensor C
is given by

C D F TF D .G i ˝ gi /.gj ˝G j / D gijG
i ˝G j : (2.75)

Let an arbitrary second-order tensorK in the current body be written as

K D K ijgi ˝ gj D Ki
j g i ˝ gj D K

j
i g

i ˝ gj D Kij g
i ˝ gj ; (2.76)

then the second-order tensors that have the same components in the undeformed
body are given by

K .I / D K ijG i ˝G j D F �1KF �T

K .II/ D Ki
j G i ˝G j D F �1KF

K .III/ D K
j
i G

i ˝G j D F TKF �T

K .IV/ D KijG
i ˝G j D F TKF :

(2.77)
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Material time differentiation of (2.72) yields PFD Pgi .t/˝G i (noteG iD constant).
As shown in (2.65), PF DLF , therefore the velocity gradient L in the embedded
coordinates is

Pg i .t/ D Lgi .t/ ) L.t/ D Pgi .t/˝ gi .t/: (2.78)

The stretch tensorD and spin tensorW are now given by

D D 1

2

� Pgi ˝ gi C g i ˝ Pgi
� D 1

2

� Pgij g
i ˝ gj

�
; (2.79)

W D 1

2

� Pg i ˝ gi � gi ˝ Pg i
�

(2.80)

�

2.2.5 Transport Theorems and Jump Condition

A volume element dV in the undeformed body
0 is related to the volume element
dv in the deformed body
 through the determinant, J , of the deformation gradient
F by

dv D J dV; (2.81)

J D det F D
ˇ
ˇ
ˇ
ˇ
@xi

@XI

ˇ
ˇ
ˇ
ˇ D eIJK

@x1

@XI

@x2

@XJ

@x3

@XK
(2.82)

where J is referred to as the Jacobian. If we recall that

eIJK
@x1

@XI

@x1

@XJ

@x2

@XK
D 0; eIJK

@x2

@XI

@x2

@XJ

@x3

@XK
D 0; � � �

the material time derivative of the Jacobian is given by

PJ D J
@vk
@xk

) PJ D J r � v D J trL D J trD (2.83)

Under this relation the material time derivative of the integral of an arbitrary
function � can be calculated as

d

dt

Z




� dv D d

dt

Z


0

� J dV D
Z




�
d�

dt
C �

@vi
@xi

�

dv
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We now have the following Reynolds’ transport theorem:

d

dt

Z




� dv D
Z




�
d�

dt
C �r � v

�

dv D
Z




�
d�

dt
C � trL

�

dv

D
Z




�
@�

@t
C r � .�v/

�

dv D
Z




@�

@t
dv C

Z

@


�v � nds: (2.84)

Next we give the transport theorem for a surface integral: The determinant of a
.3 � 3/-matrixA is given by

erst detA D eijkAirAjsAkt:

Therefore (2.81) can be written as

eijk J
�1 D eIJK

@XI

@xi

@XJ

@xj

@XK

@xk
; eIJK J D eijk

@xi

@XI

@xj

@XJ

@xk

@XK

A surface element dSDdX ^ ıX consists of line elements dX and ıX in the
undeformed body and the corresponding surface element dsDdx ^ ıx consists of
line elements dx and ıx in the deformed body

dS D N dS D dX ^ ıX ; ds D n ds D dx ^ ıx (2.85)

whereN and n are outward normals of dS and ds, respectively (Fig. 2.5). If dS is
deformed into ds, (2.85)1 implies

NI dS D eIJK dXJ dXK D eIJK
@XJ

@xj

@XK

@xk
dxj dxk;

and we have

@XI

@xi
NI dS D eIJK

@XI

@xi

@XJ

@xj

@XK

@xk
dxj dxk D J�1ni ds ) ni ds D J

@XI

@xi
NI dS

Fig. 2.5 Surface elements in
the reference body C0 and the
current body C
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Its vector form is given by

ds D n ds D J F �TN dS D J F �T dS (2.86)

where F �T D .F �1/T . Equation 2.86 is referred to as Nanson’s formula.
The time-differentiation of F F �1DI together with (2.65) gives

PF �1 D �F �1L;

therefore the time-derivative of (2.86) can be written as

d

dt
.ds/ D . PF �1

/T JN dS C .F �1/T PJN dS D �
.trL/I �LT 	 ds:

Thus the transport theorem for the surface integral of a scalar-valued function is
given by

d

dt

Z

S

� ds D
Z

S

�
d�

dt
C � trL � �LT

�

ds: (2.87)

For a vector function q we have q �LT dsDLq � ds and

dq

dt
C q trL �Lq D @q

@t
C r ^ .q ^ v/C v .r � q/:

Thus the transport theorem (2.87) can be rewritten as

d

dt

Z

S

q � ds D
Z

S

�
@q

@t
C r ^ .q ^ v/C v .r � q/

�

� ds

D
Z

S

�
@q

@t
C .r � q/ v

�

� dsC
Z

C

.v ^ q/ � dx (2.88)

where C is a line surrounding the surface S .
Next, using (2.65) the time-derivative of the line element dx is given as

d

dt
.dx/ D PF dX D Ldx:

Thus the transport theorem for the line integral is derived as

d

dt

Z

C

� dx D
Z

C

�
d�

dt
C �L

�

dx: (2.89)
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For a vector function q this can be written as

d

dt

Z

C

q � dx D
Z

C

�
dq

dt
CLT q

�

� dx: (2.90)

We next consider transport theorems involving a singular surface† that separates
a body 
 into 
C and 
� (Fig. 2.6). For example, a singular surface corresponds
to the front of a shock wave causing a sonic boom or a migrating frozen front during
ground freezing. Let the velocity of the singular surface† be V , @
C be the surface
of
C except for†, @
� be the surface of
� except for†, and n be a unit normal
on † directed to 
C.

Let � be any function. �C implies the value of � on† approached from
C, and,
similarly, �� is the value approached from 
�. By applying the transport theorem
(2.84) at each domain we have

d

dt

Z


C
� dv D

Z


C

@�

@t
dv C

Z

@
C
�v � nds �

Z

†

�CV � n ds

d

dt

Z


�
� dv D

Z


�

@�

@t
dv C

Z

@
�
�v � nds C

Z

†

��V � nds

where v is the velocity of each material point. Adding both equations under
VnDV �n yields the following Reynolds’ transport theorem with a singular surface:

d

dt

Z




� dv D
Z




@�

@t
dv C

Z

@


�v � n ds �
Z

†

ŒŒ���Vn ds (2.91)

where
ŒŒ��� D �C � �� (2.92)

implies a jump of the function � on †.
We will show in Sects. 2.3–2.5 that physical conservation laws can be written in

the following form:

Fig. 2.6 Singular surface
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Fig. 2.7 Infinitesimal
domain involving a singular
surface

d

dt

Z




�' dv D
Z




�s dv C
Z

@


q ds (2.93)

where s is a source per mass of the field variable ' and q is a flux flowing into
the body 
 through the surface @
. We then apply the transport theorem (2.91) for
an infinitesimal domain � with its boundary @� (Fig. 2.7) using the conservation
law (2.93):

Z

�

@.�'/

@t
dv C

Z

@�

�' v � nds �
Z

†

ŒŒ�'��Vn ds D
Z

�

�s dv C
Z

@�

q ds:

If the thickness ı of the domain� approaches zero, all the volumetric terms vanish:

Z

†

ŒŒ�' .V � v/ � nC q�� ds D 0:

We can conclude that, for the conservation law (2.93) involving the singular surface
†, we have the following singular surface equation:

ŒŒ�' .V � v/ � nC q�� D 0: (2.94)

2.3 Mass Conservation Law

We refer again to Fig. 2.2. If there is no mass flux, the total mass M of the
undeformed body
0 is conserved in the deformed body
:

M D
Z


0

�0 dV D
Z




� dv (2.95)

where �0 and � are the mass densities before and after deformation, respectively.
Substituting (2.81) into (2.95) yields

�0 � �J D 0 ) J D �0

�
(2.96)
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The time differential form of (2.95) using the Reynolds’ transport theorem (2.84)
gives

dM
dt

D d

dt

Z




� dv D
Z




@�

@t
dv C

Z

@


�v � nds D 0;

or in the local form we have the following mass conservation law:

d�

dt
C �r � v D @�

@t
C r � .�v/ D 0: (2.97)

Equation 2.97 is sometimes referred to as the continuity equation. Then using (2.81),
(2.83) and (2.97) we can see that

Pdv D � P�
�
dv D trD dV ) r � v D trD D � P�

�
D �d.ln �/

dt
: (2.98)

If the material is incompressible, � is constant, and the mass conservation law
(2.97) can be written as

r � v D @vi
@xi

D 0; (2.99)

which gives the incompressibility condition.
The mass conservation law (2.97) gives an alternative form of the Reynolds’

transport theorem (2.84) as

d

dt

Z




� � dv D
Z




�
d�

dt
dv: (2.100)

2.4 Law of Conservation of Linear Momentum and Stress

Newton’s second law states that in an inertial frame the rate of linear momentum is
equal to the applied force. Here, by applying the second law to a continuum region,
we define the Cauchy stress, and derive the equation of motion.

2.4.1 Eulerian Descriptions

Linear momentum of the deformed body
 is given by

L D
Z




� v dv:

If an external force per unit area t, called the traction or stress vector, acts on a
boundary @
, with the body force per unit volume b acting in the volume, the total
force is
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F D
Z

@


t ds C
Z




� b dv:

Since Newton’s second law is given by PL D F ,

d

dt

Z




� v dv D
Z

@


t ds C
Z




� b dv: (2.101)

An example of the body force bD .b1; b2; b3/ is the gravitational force. If it acts
in the negative z-direction, we have �bD .0; 0;�	/ where 	D�g (� is the mass
density, g the acceleration due to gravity and 	 the unit weight).

We consider a surface S within the body 
. One part of 
 bisected by S is
denoted by
C and the other part is denoted by 
� (Fig. 2.8). The outward normal
vector n is set on the surface S observed from 
C. Let an infinitesimal rectangular
parallelepiped be located on the surface S with the thickness ı. A surface of the n
side of the parallelepiped is referred to as�SC, the opposite side is�S� and other
lateral surfaces are �Sı. The surface area of �SC and �S� is �S , and the total
area of the lateral surfaces is �Sı. Tractions, i.e., forces per unit area, acting on
�SC, �S� and �Sı are tC, t� and tı, respectively. Applying Newton’s second
law (2.101) to the parallelepiped gives

�
dv
dt
ı�S D tC�S C t��S C tı�Sı C � b ı�S;

and ı ! 0 under�SD constant. The terms in the above equation that are dependent
on the volume and the lateral surface all vanish, with the result

t� D �tC: (2.102)

This relation is known as Cauchy’s lemma.
We next consider an infinitesimal tetrahedron OABC in the body 
 (Fig. 2.9).

Let the area of ABC be ds, the outward unit vector on ABC be n, the traction
acting on ABC be t, while the distance between ABC and O is h. In addition, let

Fig. 2.8 Stress vector
defined on an internal surface



32 2 Introduction to Continuum Mechanics

Fig. 2.9 Tetrahedron
defining the stress

the areas of OBC, OCA and OAB be ds1, ds2 and ds3, respectively, so that we
have

dsi D ds cos.n; xi / D ni ds .i D 1; 2; 3/:

The volume of the tetrahedron is given as dvDh ds=3. Let the traction acting on the
xC-surface be tx Dt1. Similarly, ty D t2 and tz D t3, which are tractions acting on
the yC- and zC-surface, respectively. The outward unit normal on OBC is �e1,
therefore it is the x�-surface. Then using Cauchy’s lemma (2.102) the traction
acting on this surface is given by

�txds1 D .�tx1 ;�tx2 ;�tx3 /T n1ds:

Similar results can be obtained for the other surfaces. Now let the body force
acting in this tetrahedron be b, and the linear momentum be �v. Then the law of
conservation of linear momentum for the tetrahedron states that

�txn1ds � tyn2ds � tzn3ds C tds C �b
1

3
h ds D �Pv1

3
h ds:

As h ! 0, we obtain

t D txn1 C tyn2 C tzn3:

Alternatively,

t D � T n D �j i ni ei ; � D �ij ei ˝ ej (2.103)

where �ij D t ij . The second-order tensor � is referred to as the Cauchy stress or
simply stress. From (2.103) we understand that the stress tensor � gives a trans-
formation law that maps the unit outward normal n to the traction t acting on that
surface.
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Returning to the law of conservation of linear momentum (2.101) and using the
mass conservation law, we have

d

dt

Z




�v dv D
Z




�
dv
dt
dv:

Therefore, by substituting (2.103) into the first term of the r.h.s. of (2.101) and
applying the divergence theorem, we have

Z

@


t ds D
Z

@


� T nds D
Z




div � T dv

Then we can obtain the following Eulerian form of the equation of motion defined
in the current deformed body:

�
dv
dt
.x; t/ D �

�
@v
@t

C v � rv
�

D div � T .x; t/C � b.x; t/ (2.104)

where

div � T D r � � T D @�j i

@xj
ei :

The component form of (2.104) is given by

�
dvi
dt

D @�j i

@xj
C � bi (2.105)

For a static equilibrium problem the partial differential equation system in
Eulerian form together with the boundary conditions is given by

r � � T C � b D 0 (2.106)

u.x/ D Nu on @
u; (2.107)

� T n.x/ D Nt on @
t (2.108)

2.4.2 Lagrangian Descriptions |

We introduce a relationship between the Cauchy stress � defined in the deformed
body with its basis fei g and the first Piola-Kirchhoff stress … defined in the
undeformed body with its basis fEI g as follows:

t ds D � Tnds D t0 dS D …TN dS (2.109)
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where n and N are unit outward normals defined on ds for the deformed body and
on dS for the undeformed body. The vector t is a traction defined on ds, and t0

is the shifted vector of t on dS (see Fig. 2.10). By substituting Nanson’s relation
(2.86), such that ndsDJ F �TN dS , into (2.109), the first Piola-Kirchhoff stress
can be written as

… D …IiEI ˝ ei D JF �1� ; …Ii D J
@XI

@xj
�j i (2.110)

The transpose of the first Piola-Kirchhoff stress S D…T is known as the nominal
stress:

S D SiIei ˝EI D J�F �T ; SiI D J�ij
@XI

@xj
(2.111)

Note that in some books, e.g., Kitagawa (1987) pp. 33, the first Piola-Kirchhoff
stress and the nominal stress are defined in an opposite sense.

Since the first Piola-Kirchhoff stress … is not symmetric as understood by
(2.110), we introduce a symmetrized tensor T , called the second Piola-Kirchhoff
stress, and the Euler stress �, which is the transformed tensor of T , into the
deformed body using the rotation tensor R:

T D JF �1�F �T D …F �T D F �1S ; (2.112)

� D RTRT : (2.113)

Referring to (2.109), Newton’s equation of motion (2.101) can be expressed by
the Lagrangian description as

Z


0

�
dv
dt
.X ; t/ J dV D

Z

@
0

…TN .X ; t/ dS C
Z


0

� b.X ; t/ J dV:

Fig. 2.10 Traction vectors represented for undeformed and deformed bodies
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Recalling J D�0=� and applying the divergence theorem to the first term of the
r.h.s. yields the following Lagrangian form of the equation of motion:

�0
dv
dt
.X ; t/ D Div…T .X ; t/C �0b.X ; t/ (2.114)

where we have

Div…T D .…Iiei ˝EI /

�

ej
@

@XJ

�

D @…Ii

@XI
ei :

Then a component form of (2.114) is given by

�0
dvi
dt

D @…Ii

@XI
C �0 bi : (2.115)

For a static equilibrium problem, the system of partial differential equations in
Lagrangian form together with the boundary conditions is given by

Div…T .X/C �0b.X/ D 0 (2.116)

u.X/ D Nu0 on @
u; (2.117)

…TN .X/ D Nt0 on @
t (2.118)

2.5 Conservation of Moment of Linear Momentum
and Symmetry of Stress

Let x be a position vector in the deformed body 
, then the total moment of linear
momentum of the body with respect to the origin O is calculated by

H D
Z




x ^ � v dv;

and the total torque T due to an external force t and a body force b is given by

T D
Z

@


x ^ t ds C
Z




x ^ � bdv:

The conservation law for the moment of linear momentum states that PHD T ;
therefore we have

d

dt

Z




x ^ �vdv D
Z

@


x ^ t ds C
Z




x ^ � b dv: (2.119)
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Applying the transport theorem (2.84) to the l.h.s. of (2.119) and noting dx=dt^
v D v ^ v D 0 yields

eijkxj �
dvk
dt

D eijk
@ xj �lk

@xl
C eijkxj �bk

) eijkxj

�

�
dvk
dt

� @�lk

@xl
� bk

�

� eijk�jk D 0:

The terms in ( ) of this equation vanish because of the equation of motion (2.104),
and eventually the following result is obtained:

eijk�jk D 0:

This implies
�jk D �kj ) � D � T : (2.120)

That is, if we have the conservation law of moment of linear momentum and assume
no point-wise source term of moment, the Cauchy stress is symmetric. A further
exposition of the symmetry property of the Cauchy stress is given by Selvadurai
(2000b).

2.6 Incremental Forms of the Equation of Equilibrium |

For nonlinear problems such as elasto-plastic materials it is necessary to use a
formulation based on an incremental form of the equation of equilibrium. We can
introduce either the total Lagrangian form or the updated Lagrangian form. In the
former case the incremental form is expressed in Lagrangian terms, while in the
latter case the incremental form is given in an Eulerian description.

2.6.1 Total Lagrangian Form

The total Lagrangian form of the equation of equilibrium is obtained by differenti-
ating (2.116) directly. Thus the partial differential equation system together with the
boundary conditions is given by

Div P…T
.X/C �0 Pb.X/ D 0; (2.121)

v.X/ D Nv0 on @
u; (2.122)

P…T
N .X/ D NPt0 on @
t : (2.123)
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The component form can be written as

@ P…Ii .X/

@XI
C �0 Pbi .X/ D 0; (2.124)

vi .X/ D Nv0i on @
0
u; (2.125)

P…IiNI .X/ D NPt0i on @
0
t : (2.126)

2.6.2 Updated Lagrangian Form

By integrating each term of Nanson’s relation nds D J F �TN dS we have

Z

@


nds D
Z

@
0

J F �TN dS D
Z


0

Div.J F �T / dV D 0;

Z

@
0

N dS D
Z

@


J�1 F T n ds D
Z




div.J�1 F T / dv D 0:

These give the following equations:

Div.J F �T / D @

@XI

�
J F�1

I i

�
ei D 0; div.J�1 F T / D @

@xi

�
J�1 FiI

�
EI D 0:

(2.127)

Next, (2.110) implies that
J� D F…;

which can be time-differentiated to yield the nominal stress rate
ı
… defined by

ı
… 	 J�1F P… D P� �L� C � trD: (2.128)

Equation 2.128 implies that
ı
… is an image of P… in the deformed body mapped from

the undeformed body by J�1F . A component form of (2.128) is given by

ı
…ij D J�1FiI P…Ij (2.129)

We take the divergence of (2.129) using (2.127)2 and obtain

@
ı
…ji

@xj
D J�1FjI

@ P…Ii

@xj
D J�1 @xj

@XI

@ P…Ii

@xj
D J�1 @ P…Ii

@XI
:
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Since J D�0=�, (2.124) for the deformed body can be given as

@
ı
…ji

@xj
C � Pbi.x/ D 0: (2.130)

Thus the partial differential equation system of the updated Lagrangian form
together with the boundary conditions is given by

div
ı
…T .x/C � Pb.x/ D 0; (2.131)

v.x/ D Nv on @
u; (2.132)

ı
…Tn.x/ D NPt on @
t : (2.133)

It must be noted that, as understood from (2.131), “the updated Lagrangian form is
expressed in Eulerian terms”.

2.7 Specific Description of the Equation of Motion |

As we shall discuss in Chap. 3, specific descriptions of stress and stress increments
are preferable when formulating energy theorems. Hence we will now rewrite the
equations of motion in the specific forms.

2.7.1 Eulerian Equation of Motion

Let us define the normalized measure of Cauchy stress � 
 by

� 
.x; t/ D 1

�
� .x; t/: (2.134)

Then the Eulerian equation of motion (2.104) can be written as follows:

�
dv
dt

D div .�� 
/T C � b: (2.135)

It is interesting to note that the dimension of Cauchy stress � is M/LT2 (N/m2 D Pa
in MKS) while for � 
 it is L2/T2 (J/kg in MKS), which has the dimension of energy
per unit mass.
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2.7.2 Lagrangian Equation of Motion

The specific first Piola-Kirchhoff stress …
, specific second Piola-Kirchhoff stress
T 
 and specific Euler stress �
 are defined by

…
 D 1

�
…; T 
 D 1

�0
T ; �
 D RT 
RT (2.136)

Since J D�0=�, and using (2.110) and (2.112),

…
 D F �1� 
; (2.137)

T 
 D F �1� 
F �T : (2.138)

Then the Lagrangian equation of motion (2.114) can be written as

�0
dv
dt

D Div .�0…

/T C �0b: (2.139)

2.7.3 Incremental Form of the Total Lagrangian Equation
of Motion

Differentiating (2.139) with respect to time yields

�0
d Pv.X ; t/
dt

D Div


�0 P…
.X ; t/

�T C �0 Pb.X ; t/ (2.140)

where PvDdv=dtDa (a is the acceleration), and the l.h.s. of (2.140) is the rate of
acceleration, which can be regarded as an increment of the velocity. Equation 2.140
is equivalent to (2.121) if vD0. The component form of (2.140) is given by

�0
d Pvi
dt

D @

@XI



�0 P…


Ii

�
C �0 Pb: (2.141)

2.7.4 Incremental Form of the Updated Lagrangian Equation
of Motion

From (2.137), � 
DF…
 and differentiating this yields

P� 
 D L� 
 C F P…
:
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Thus we can define the specific nominal stress rate by

ı
…
 	 F P…
 D P� 
 �L� 
 (2.142)

On the other hand we have
@

@XI
D FjI

@

@xj
:

Then (2.140) can be expressed as

�0
d Pv.x; t/
dt

D div

�

�0
ı
…
.x; t/

�T
C �0 Pb.x; t/ (2.143)

The l.h.s. of (2.143) can be written in the normal Eulerian description as

�0
d Pv.x; t/
dt

D �0

�
@Pv
@t

C v � div Pv
�

: (2.144)

The component form of (2.143) is given as follows:

�0

�
@Pvi
@t

C vj
@Pvi
@xj

�

D @

@xj

�

�0
ı
…


ji

�

C �0 Pbi : (2.145)

Equation 2.143 is equivalent to (2.131) if vD0; however, it is interesting to note
that the body force Pb is modified by �, while each term of (2.143) is modified
by �0.

2.8 Response of Materials: Constitutive Theory

The governing equations that control material responses are given by the mass con-
servation law (2.97) and the equation of motion (2.104) if no energy conservation is
considered. Note that the Cauchy stress is symmetric under the conservation law of
moment of linear momentum. Furthermore, if the change of mass density is small
(or it may be constant), the equation to be solved is given by (2.104). The unknowns
in this equation are the velocity v (or displacement u in the small strain theory)
and the stress � , i.e. giving a total of nine, that is, three for v (or u) and six for � .
However, the equation of motion (2.104) consists of three components, therefore it
cannot be solved, suggesting that we must introduce a relationship between v (or u)
and � . The framework that provides this relationship is referred to as a constitutive
theory.
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2.8.1 Fundamental Principles of Material Response

The constitutive law is fundamentally determined for each material, and it gives an
empirical rule. To establish constitutive laws the following physical conditions are
required:

Principle of determinism: The stress is determined by the history of the motion
undergone by the body.

Principle of local action: The stress at a point is not influenced by far-field motions.
Principle of frame indifference: The response of a material must be described under

the frame indifference (see Sect. 2.2.2).

The principle of frame indifference is sometimes called objectivity.
Let a stress � be described as a function of a material point x in the deformed

body at time t :
� D � .x; t/: (2.146)

As shown by (2.18), a coordinate transformation of the point x between two
different coordinate systems defined in the deformed body
 is written as

x� D x�
0 CQ.x � x0/; t� D t � a; (2.147)

and the frame indifference of the stress � is therefore

� �.x�; t�/ D Q.t/ � .x; t/QT .t/: (2.148)

Because (2.147) implies that F �dXDQF dX , the deformation gradient F is
transformed as

F � D QF ; Q D Qije
�
i ˝ ej : (2.149)

Thus F is not frame indifferent. Some tensors introduced in Sect. 2.2.4 are verified
as follows:

C � D F �TF � D .QF /T .QF / D F TF D C ; (2.150)

B� D F �F �T D .QF / .QF /T D QBQT ; (2.151)

E� D F �F �T � I� D .QF /T .QF /� I D E ; (2.152)

L� D PF �
.F �/�1 D .Q PF C PFQ/.QF /�1 D QLQT C�; (2.153)

D� D 1

2

�
L� CL�T � D QDQT ; (2.154)

W � D 1

2

�
L� �L�T � D QW QT C�: (2.155)

Note that the right Cauchy-Green tensor C and the Green strain E are not frame
indifferent, but frame invariant.
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2.8.2 Convected Derivative, Corotational Derivative and Frame
Indifference |

If we consider time-differentiation of vectors and tensors, not only the components
but also the basis must be differentiated. Thus even if the original vectors and tensors
are frame indifferent, their time-derivatives are not in general frame indifferent. In
order to avoid this difficulty several time-differential forms are considered.

Embedded coordinates are used (recalling Note 2.5) with the covariant basis fgi g
and contravariant basis fgi g in the deformed body (i.e., Eulerian description), so that
a vector v can be written as

v D vi gi D vi g
i : (2.156)

Its material time derivative is given by

Pv D Pvi gi C vi Pgi D Pvi gi C vi Pgi : (2.157)

Recalling (2.78), the time-derivative of the covariant basis is Pgi DLgi . On the other

hand, since gi DF �TG i due to (2.74) and PF �1D �F �1L due to (2.68), the time-
derivative of the contravariant basis is given by

Pgi D �LT gi : (2.158)

Now we can define the convected derivatives by

ıcv
ıt

D Pvi gi ; ıcv
ıt

D Pvi gi : (2.159)

Then from (2.158) we have

ıcv
ıt

D Pv �Lv D F
d.F �1v/
dt

; (2.160)

ıcv
ıt

D Pv CLT v D F �T d.F T v/
dt

: (2.161)

As observed in (2.159), ıcv=ıt; ıcv=ıt denotes a part of v excluding the change of
basis, which corresponds to the change of v when the observer is moving along the
same coordinate system of the deformed body. ıcv=ıt is known as the contravariant
derivative or upper convected rate, and ıcv=ıt is known as the covariant derivative
or lower convected rate.5

5The convected derivatives of a vector v are sometimes written as ıcv=ıt D C
v ; ıcv=ıt D B

v . For

the second-order tensor T these are ıccT =ıt D C
T ; ıccT =ıt D B

T .
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For a second-order tensorT four convected derivatives are introduced as follows:

ıccT

ıt
D PT ijgi ˝ gj ;

ıc�cT
ıt

D PT i�j gi ˝ gj ;

(2.162)
ı�c
c T

ıt
D PT �j

i g
i ˝ gj ;

ıccT

ıt
D PTij g

i ˝ gj :

Applying (2.78) and (2.158) and noting that LT Dgi ˝ Pgj yields

T ij Pgi ˝ gj D LT ijgi ˝ gj D LT ;

T ijgi ˝ Pgj D T ijgi ˝Lgj D .T ijgi ˝ gj /L
T D TLT ;

T i�j Pgi ˝ gj D LT i�j gi ˝ gj D LT ;

T i�j g i ˝ Pgj D �T i�j gi ˝LT gj D �TL;
T

�j
i Pg i ˝ gj D �LT T �j

i g
i ˝ gj D �LT T ;

T
�j
i g

i ˝ Pgj D T
�j
i gi ˝Lgj D TLT ;

Tij Pg i ˝ gj D �LT Tij g
i ˝ gj D �LTT ;

Tij g
i ˝ Pgj D �Tij g

i ˝LTgj D �TL:

Thus (2.162) can be written as

ıccT

ıt
D PT �LT � TLT D F

d.F �1TF �T /
dt

F T ; (2.163)

ıc�cT
ıt

D PT �LT C TL D F
d.F�1TF /

dt
F �1; (2.164)

ı�c
c T

ıt
D PT CLTT � TLT D F �T d.F TTF �T /

dt
F T ; (2.165)

ıccT

ıt
D PT CLTT C TL D F �T d.F TTF /

dt
F �1: (2.166)

If an orthonormal coordinate transformation tensor Q .Q�1DQT / is used
instead of the deformation gradient F , the concept of the convected derivative can
be extended. That is, let �D PQQT be an antisymmetric rotation tensor generated
by Q as shown in (2.27), then the corotational derivative of a second-order tensor
T due toQ is defined by

DQT

Dt
D PT C T� ��T D Q

d.QTTQ/

dt
QT : (2.167)
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Here DQT =Dt represents an objective part of the time derivative of the second-
order tensor T (the proof is similar to (2.170) as shown below). For example if
the rotation tensor R and the spin tensor W are used instead of Q and �, we can
introduce the Zaremba-Jaumann rate as follows:

DT

Dt
D PT C TW �WT D R

d.RTTR/

dt
RT : (2.168)

The material time derivative of a vector-valued or tensor-valued function is not
always objective as described above even if the original function is objective. It can
be said that the convected derivative and corotational derivative are introduced to
ensure objectivity of the time-derivative. For example we have

ıcv
ıt

�
D dv�

dt�
CL�T v� D d.Qv/

dt
C .QLT QT ��/ .Qv/ D Q

ıcv
ıt

(2.169)

ıccT

ıt

�
D dT �

dt�
CL�T T � C T �L�

D d.QTQT /

dt
C .QLT QT ��/QTQT CQTQT .QLQT C�/

D Q
ıccT

ıt
QT : (2.170)

Note that the time derivative P� of Cauchy stress � is not objective, but the Zaremba-
Jaumann rate D�=Dt is objective.

2.8.2.1 Spin of Eulerian Triads�E

Recall that the Eulerian triads fni g was introduced in (2.57). Let us define the spin
�E of fni g by

Pni D �E ni ) �E D Pni ˝ ni D 

E

ij ni ˝ ni ; 

E

ij D ni � Pni : (2.171)

Since ni ˝ ni Di .i is the unit tensor for the deformed body), the time-differential
yields

�E D Pni ˝ ni D �ni ˝ Pni D �.�E/T :

This shows that �E is antisymmetric.
We can define the following Lagrangian tensor �ER, which is the pull-back of

�E to the undeformed body by the rotation tensor RDni ˝N i :

�ER D RT�ER D 

E

ij N i ˝N i ) RT Pni D �ERN i (2.172)
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2.8.2.2 Spin of Lagrangian Triads�L

Recall that the Lagrangian triads fN i g was introduced in (2.55). Let us also define
the spin�L of fN i g by

PN i D �LN i ) �L D PN i ˝N i D 

L

ij N i ˝N i ; 

L

ij D N i � PN i :

(2.173)

It is obvious that�L is antisymmetric. We can define the following Eulerian tensor
�RL, which is the push-forward of�L to the deformed body by the rotation tensor
RDni ˝N i :

�RL D R�LRT D 

L

ij ni ˝ ni ) R PN i D �RLni : (2.174)

2.8.2.3 Eulerian Spin !R and Lagrangian Spin !RR

Time-differentiatingRRT Di yields PRRT CR PRT D0, therefore the Eulerian spin
!R and Lagrangian spin !RR, which is the pull-back of the Eulerian spin into the
undeformed body, can be defined by

!R D PRRT D !Rij ni ˝ ni ; !RR D RT!RR D RT PR D !Rij N i ˝N i :

(2.175)
On the other hand, because of (2.171) and the relation ni DRN i , we have



E

ij D ni � Pnj D ni � . PRN i CR PN i / D ni � . PRRT /nj C ni �R�LN j

D ni �!Rnj C ni ��RLnj :

Thus the component form of the Eulerian spin is

!Rij D 

E

ij �
L

ij : (2.176)

The direct notations are given by

!R D �E ��RL; !RR D �ER ��L: (2.177)

2.8.2.4 Corotational Derivatives

Since the deformation gradientF can be written in terms of the polar decomposition
as defined in (2.46), its time-differentiation gives

PF D PRU CR PU :
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By using (2.65) we obtain the following corotational derivative
ı
V due to !R:

L D PFF �1 D W CD D PRRT CR PURT .RU�1RT / D !R C ı
V V �1 (2.178)

ı
V D R PURT D DRV

Dt
D PV C V !R � !RV : (2.179)

It should be noted that the term
ı
V V �1 includes an antisymmetric part. Both U and

PU are symmetric, therefore we have

D D 1

2
R

 PUU�1 C U�1 PU

�
RT ; W D !R C 1

2
R

 PUU�1 �U�1 PU

�
RT :

(2.180)

On the other hand, by recalling that V D P
�i ni ˝ ni ; �

E D Pni ˝ ni , the time-
derivative PV can be given as

PV D P 
 P�i ni ˝ ni C �i Pni ˝ ni C �i ni ˝ Pni
�

D P P�i ni ˝ni C�EV �V �E:

Thus we can define the following corotational derivative
O
V due to �E :

O
V D DEV

Dt
D PV C V �E ��EV D P P�i ni ˝ ni : (2.181)

Equation 2.179 gives the relationship between both corotational derivatives as

ı
V D O

V C�RLV � V �RL: (2.182)

It should be emphasized that from (2.179),
ı
V DDRV =Dt gives the corotational

derivative of V due to!R, while from (2.181),
O
V DDEV =Dt gives the corotational

derivative of V due to �E .

2.8.3 Invariants of Stress and Strain and Isotropic Elastic
Solids

2.8.3.1 Invariants and Spherical Decomposition of a Second-Order
Real-Valued Symmetric Tensor

A second-order real-valued symmetric tensor T gives three real eigenvalues�which
are determined by the characteristic equation:

det.T � �I/ D ��3 C I1�
2 � I2�C I3 D 0; (2.183)
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I1 D trT ; I2 D 1

2

�
.trT /2 � trT 2

	
; I3 D detT (2.184)

where I1; I2; I3 are the first, second and third principal invariants, respectively.
The mean or volumetric tensor T and the deviatoric tensor T 0 are defined by

T D 1

3
.trT /I ; T 0 D T � T : (2.185)

Since the first invariant of the deviatoric tensor T 0 is zero (J1D trT 0 	0), its second
and third invariants are

J2 D 1

2
T 0
ikT

0
ki D 1

2
tr .T 0/2; J3 D detT 0: (2.186)

Let us define the k-th moment NIk of a tensor T by

NIk D trT k: (2.187)

Note 2.6 (Cayley-Hamilton Theorem). The well-known Cayley-Hamilton theorem
states that

C.T / D �T 3 C I1T
2 � I2T C I3I D 0 (2.188)

which is similar to the characteristic equation (2.183).

Proof. Let us introduce an orthonormal basis feig .iD1; 2; 3/, and let the coefficient
matrix of T be Tlk (T DTlk el ˝ ek), which gives

T ek D Tlk el : (2.189)

We define a tensor B lk with tensorial components given by

B lk D TlkI � ılkT

(note that IDıij ei ˝ ej ); thus (2.189) is equivalent to

B lkel D 0: (2.190)

We should recall that the adjoint A�
ij of a regular matrix Aij is given by

A�
km Alk D .detA/ ıml, and if we multiply the adjoint B�

km (with tensorial
components) by (2.190), we obtain

B�
kmB lkel D det .B ij/ ımle l D 0; ) C.T / el D det .TlkI � ılkT / el D 0

(2.191)
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ıml D
(
I if m D l

0 if m ¤ l:

By multiplying vl with this result and setting vDvlel , we have C.T / vD0 for an
arbitrary v, which implies that we have (2.188) �

Operating the trace on (2.188) and using the definition of the k-th moment given
by (2.187) yields I3D NI3�I1 NI2CI2 I1. Since I1D NI1, the relationships between the
invariants and moments are given by

I1 D NI1; I2 D 1

2

�
. NI1/2 � NI2

	
; I3 D 1

3
NI3 � 1

2
NI1 NI2 C 1

6
. NI1/3: (2.192)

Thus the third invariant J3 of the deviatoric tensor T 0 is given by the third
moment NJ3:

J3 D 1

3
T 0
ikT

0
klT

0
li D 1

3
tr .T 0/3 D 1

3
NJ3: (2.193)

Let us introduce the norm6 of a second-order tensor T by

jjT jj D .T W T /1=2 D Tij Tij:

Since jjI jjDp
3, the ‘signed magnitude’ of the volumetric tensor T is calculated as

T D 1p
3
Tkk: (2.194)

If the ‘basis tensor’ of T is introduced by

n.1/ D n
.1/
ij ei ˝ ej ; n

.1/
ij D @T

@Tij
D Tij

T
D ıijp

3
; (2.195)

we have

T D T n.1/: (2.196)

For the deviatoric tensor T 0 we introduce the norm T 0 and the ‘basis tensor’
n.2/ by

T 0 D .T 0 W T 0/1=2 D .Tij Tij � T
2
/1=2; (2.197)

6The inner product of the second-order tensors A; B is introduced by A W B D tr .ATB/ D
Aij Bij. A and B are orthogonal if A W B D 0.
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n.2/ D n
.2/
ij ei ˝ ej ; n

.2/
ij D @T 0

@T 0
ij

D T 0
ij

T 0 (2.198)

) T 0 D T 0n.2/: (2.199)

Lode’s angle T� of T and the Lode parameter yT can be introduced by

yT D cos .3T�/ D 3
p
3J3

2 .J2/3=2
D p

6 tr .n.2//3: (2.200)

If the tensor of Lode’s angle is defined by

T � D T� n
.3/; (2.201)

its ‘basis tensor’ n.3/Dn
.3/
ij ei ˝ ej can be calculated as

n
.3/
ij D T 0 @T�

@Tij
D T 0 @T�

@yT

@yT

@Tij
D

p
6

sin .3��/

�

n
.2/
ij tr .n.2//3 � n.2/ik n.2/kj C 1p

3
n
.1/
ij

�

) n.3/ D
p
6

sin .3��/

�

n.2/tr .n.2//3 � .n.2//2 C 1p
3
n.1/

�

(2.202)

where we used the relationship tr .n.2//2D1.
The basis tensors n.1/; n.2/; n.3/ are mutually orthogonal in the sense of

n.˛/ W n.ˇ/ D ı˛ˇ: (2.203)

Thus the second-order real-valued symmetric tensor T is written in orthogonal
components by

T D T.˛/ n
.˛/ .˛ W summed/ (2.204)

where we set
T.1/ D T ; T.2/ D T 0; T.3/ D T� :

The result (2.204) is referred to as the spherical decomposition of T .

2.8.3.2 Geometrical Interpretation of Spherical Decomposition in the
Principal Space

Let the eigenvalue representation of the second-order real-valued symmetric tensor
T be given by

T D
3X

iD1
Tie

0
i ˝ e0i :
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Fig. 2.11 Deviatoric,
volumetric and Lode’s
components in the principal
space

Then the volumetric, deviatoric and Lode’s components T , T 0, T� are as shown
in Fig. 2.11 together with the base tensors n.˛/ .˛D1; 2; 3/ (since the tensors in
the principal space are termed ‘vectors’, we will use this designation). T is the
projection of T on the diagonal axis T1DT2DT3 (which is referred to as the
hydrostatic axis for the stress). The difference vector T �T gives the deviatoric
vector T 0. The orthogonal plane to T including the vector T 0 is referred to as the
…-plane. . If the projected axis of T1 on the …-plane is T 0

1 , the angle between T 0
1

and T 0 gives the Lode’s angle T� .
This implies that, by spherical decomposition, cylindrical polar coordinates are

introduced in terms of the ‘hydrostatic’ axis.

2.8.3.3 Spherical Decompositions of Stress and Strain and the Response
of an Isotropic Elastic Solid

The stress � is a second-order real-valued symmetric tensor, and the spherical
decomposition is given as follows:

N� D I �1 I=3 Volumetric stress
I �1 D tr .� / First invariant of stress
N� D I �1 =

p
3 Magnitude of volumetric stress

� 0 D � � N� Deviatoric stress
� 0 D k� 0k D .� 0 W � 0/1=2 Magnitude of deviatoric stress
�� D 1

3
cos�1f3p3J �3 =2.J �2 /3=2g Lode’s angle for stress

J �2 D � 0 W � 0=2 Second invariant of deviatoric stress
J �3 D det .� 0/ Third invariant of deviatoric stress

For the strain " we can introduce the spherical decomposition as follows:

N" D I "1I=3 Volumetric strain
I "1 D tr ."/ First invariant of strain
N" D I "1 =

p
3 Magnitude of volumetric strain

"0 D " � N" Deviatoric strain
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"0 D k"0k D ."0 W "0/1=2 Magnitude of deviatoric strain
"� D 1

3
cos�1f3p3J "3 =2.J "2 /3=2g Lode’s angle for strain

J "2 D "0 W "0=2 Second invariant of deviatoric strain
J "3 D det ."0/ Third invariant of deviatoric strain

If a material body is an isotropic solid, the stress and strain are decomposed by
using the same basis n.˛/:

� D N� C � 0 C � � ; N� D N� n.1/; � 0 D � 0n.2/; � � D � 0�� n.3/; (2.205)

" D N"C "0 C "� ; N" D N"n.1/; "0 D "0n.2/; "� D "0"� n.3/; (2.206)

and the linear elastic response is written in terms of the volumetric and deviatoric
components independently (cf. Note 2.7). Thus, referring to Fig. 2.11, the response
gives a state that is symmetric about the hydrostatic axis as follows:

N� D 3� N"; � 0 D 2�"0: (2.207)

The coefficients �; � are called Lamé’s constants. Then the response of the linear
elastic solid, called the Hookean solid, is written as

�ij D �"kk ıij C 2� "ij: (2.208)

Young’s modulus E and Poisson’s ratio � are related to Lamé’s constants �; �, the
shear modulusG and bulk modulusK as

� D E�

.1C �/.1 � 2�/ ; � D E

2.1C �/
D G; K D �C 2

3
� D E

3.1� 2�/
:

(2.209)

Note 2.7 (Lode’s angle and the response of isotropic solids). If the elastic response
of solids is written using Hooke’s law as

� D De "; (2.210)

the most general form of the fourth order tensor De for isotropic materials is
given by

De
ijkl D �ıijıkl C �.ıikıjl C ıil ıjk/C �.ıikıjl � ıil ıjk/ (2.211)

(cf. Malvern 1969, pp. 277). Since � and " are symmetric (�ij D�j i , "ij D"j i ), we
have the condition �D0, which causes no change in the Lode’s angle component
for isotropic solids, and the axi-symmetric response with respect to the hydrostatic
axis. Another result is that there exist two independent elastic constants, although
the number of eigenvalues of stress and strain is three.
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We also note that a tensor function defined as

De
ijkl D �ıijıkl C �ıikıjl C �ıilıjk (2.212)

is also isotropic (Little 1973; Spencer 2004). The constitutive equation (2.210) now
becomes

� D �ıij"kk C �"ij C �"ij: (2.213)

Since "ij D"j i , no generality is lost by setting �D� such that �D�ıij"kkC2�"ij. �

The inverse relation of (2.208) is

"ij D � �

E
�kk ıij C 1C �

E
�ij: (2.214)

For two dimensional problems we can consider two idealized states: the
plane strain state where "zz D"xz D"yz D0 and the plane stress state in which
�zz D�xz D�yz D0. Under these conditions, Hooke’s law is rewritten for the vector
forms of stress and strain as

� D De "; � D Œ�xx �yy �xy�
T ; " D Œ"xx "yy 	xy�

T (2.215)

Plane strain W De D E.1� �/

.1C �/.1� 2�/

2

6
6
6
6
4

1
�

1 � �
0

�

1 � �
1 0

0 0
1 � 2�
2.1� �/

3

7
7
7
7
5

(2.216)

Plane stress W De D E

1 � �2

2

6
6
4

1 � 0

� 1 0

0 0
1 � �

2

3

7
7
5 : (2.217)

Here we have used the engineering shear strain 	xy D 2"xy . The representation of
stress and strain given by (2.215) is referred to as the contracted form.

If the material body involves an initial stress � 0 and/or initial strain "0, Hooke’s
law is transformed to

� D De."C "0/C � 0 (2.218)

If the initial strain is caused by a temperature difference T � T0, we have "0 D
˛.T � T0/i for an isotropic material body, therefore the above equation becomes

"ij D � �

E
�kk ıij C 1C �

E
�ij C ˛.T � T0/ ıij (2.219)

where T0 is the reference temperature and ˛ is the thermal expansion coefficient.
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Substituting Hooke’s law (2.208) into the equation of motion (2.104) yields the
following Navier’s equation where the unknown variable is the displacement u:

�
d2ui
dt2

D .�C �/
@2uj
@xi@xj

C �
@2ui
@xj @xj

C �bi : (2.220)

Note 2.8 (Solid and fluid). The term “solid” is used for the material body where the
response is between the stress � and the strain " or between the stress increment d�
and the strain increment d". The term “fluid” is used for the material body where
the response is between the stress � and the strain rate P" (or the stretch tensor D).
For a fluid we have to introduce a time-integration constant, which is referred to as
the pressure p. �

2.8.4 Newtonian Fluid

For simplicity, we describe the equations without mass density �. Since the specific
stress � 
.x; t/ is given in terms of an Eulerian description, we treat here the
simplest response for that description. To satisfy the principle of determinism and
the principle of local action mentioned in the previous section, the stress � 
.x; t/
can be written in terms of v and rv:

� 
 D � 
.v;rv/: (2.221)

The frame indifference of the stress � 
.x; t/ is a natural conclusion of Newtonian
mechanics in that the force vector is frame indifferent. Since the stretch tensorD is
frame invariant by (2.154), we useD instead of rv. From (2.27) we have

v� D dx�
0

dt
C dQ

dt
.x � x0/CQv:

Therefore the frame indifference requires the following condition:

� 
�.v�; D�/ D Q� 




Px�
0 C PQ.x � x0/CQv; QDQT

�
QT

We define x�
0 as

Px�
0 D � PQ.x � x0/ �Qv

Then we can see that if we have

Q� 
.D/QT D � 
.QDQT / ) � 
 D � 
.D/ (2.222)
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the fundamental principles mentioned in the previous section are satisfied. SinceD
is symmetric and non-negative definite, the most general form (Truesdell and Noll
1965, pp. 32; Malvern 1969, pp. 194) can be given by

� D � � 
 D �0i C �1D C �2D
2 (2.223)

where �i .iD0; 1; 2/ are functions of the invariants IDi .iD1; 2; 3/ ofD:

�i D �i .I
D
1 ; I

D
2 ; I

D
3 /: (2.224)

The invariants IDi are calculated by the following characteristic equation for
specifying the eigenvalue �:

det .D � �i / D ��3 C ID1 �
2 � ID2 �

1 C ID3 D 0; (2.225)

ID1 D trD D r � v;

ID2 D 1

2

h
.ID1 /

2 � OID2
i
; OID2 D tr .D2/;

ID3 D detD

We omit the third term of the r.h.s. of (2.223) so as to linearize it:

� D � � 
 D .�p C � trD/ i C 2�D (2.226)

where p is the pressure and �; � are viscosities (� is the shearing viscosity, and
�D�C2�=3 is the bulk viscosity: described below). The pressure p appears in this
equation because v (and also D) is a material time derivative of the position vector
x of a material point in the deformed body, which needs an integration constant;
this corresponds to the pressure. Note that usually the “pressure” is set positive for
compression, therefore a negative sign of p appears in (2.226). Materials that behave
as (2.226) are referred to as Newtonian fluids.

Let us resolve the stress � and stretch tensor D into direct sums of volumetric
and deviatoric components, respectively:

� D N� C � 0; (2.227)

N� D 1

3
.tr � / i ; � 0 D � � N� ; (2.228)

D D D CD0; (2.229)

D D 1

3
.trD/ i ; D0 D D �D: (2.230)

N� and D are the volumetric components of each tensor, and � 0 and D0 are the
deviatoric (or shearing) components. The volumetric component is orthogonal to
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the deviatoric one in the following sense:

N� W � 0 D tr
� N� T � 0� D 0; D W D0 D tr



D
T
D0� D 0: (2.231)

Since .r � v/ID3D, we can rewrite (2.226) as

N� C � 0 D �pi C 3

�

�C 2

3
�

�

D C 2�D0

Recalling the orthogonality of the volumetric and deviatoric components, each
component will give an independent response:

N� D �pi C 3�D; � 0 D 2�D0 (2.232)

This is a direct result of the response of an isotropic linear fluid. In this equation the
constant

� D �C 2

3
� (2.233)

gives the bulk (i.e., volumetric) viscosity and � is the shearing viscosity.
Thus the most fundamental constitutive law for a fluid is understood to be given

as a Newtonian fluid defining a linear relationship between the stress � and the
stretch tensor D (recall that the stretch tensor D is equal to the strain rate for the
solid with small strain). The constitutive law is also called Stokes’ law, and can be
rewritten as

�ij D �p ıij C �Dkk ıij C 2�Dij (2.234)

Substituting Stokes’ law (2.234) into the equation of motion (2.104) under the
Eulerian description yields the following equation of motion for the unknown
velocity v:

�

�
@vi
@t

C vj
@vi
@xj

�

D � @p

@xi
C .�C �/

@2vj
@xi@xj

C �
@2vi
@xj @xj

C �bi (2.235)

These are the Navier-Stokes equations. If the body force can be set as bD � r� by
a potential �, we define

p� D p C ��; (2.236)

and the Navier-Stokes equations can be written as

�

�
@vi
@t

C vj
@vi
@xj

�

D �@p
�

@xi
C .�C �/

@2vj
@xi@xj

C �
@2vi
@xj @xj

: (2.237)
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If the fluid is incompressible, the condition (2.99) applies and we have

�

�
@vi
@t

C vj
@vi
@xj

�

D � @p

@xi
C �

@2vi
@xj @xj

C �bi : (2.238)

2.9 Small Strain Viscoelasticity Theory

The one-dimensional viscoelastic response is schematically illustrated in Fig. 2.12.
Note that the ‘stress relaxation’ is a phenomenon that appears under a constant strain
condition, while ‘creep’ is one that appears under a constant stress condition. The
response shown is represented by a model based on an excitation-response theory
together with a data management procedure. Note that we assume an isotropic
material response.

2.9.1 Boltzmann Integral and Excitation-response Theory

The viscoelastic response is commonly described by using a form of Boltzmann’s
hereditary integral, referred to as the excitation-response theory (Gurtin and
Sternberg 1962; Yamamoto 1972; Christensen 2003).

Fig. 2.12 Viscoelastic response



2.9 Small Strain Viscoelasticity Theory 57

Let us consider a step input function

x.t/ D
(
0 for t < 0;

x0 D constant for t > 0:
(2.239)

The corresponding response to this input can be written as

y.t/ D �.t/ x0 (2.240)

where �.t/ is referred to as the after-effect function (Fig. 2.13a) which satisfies the
condition

�.t/ D 0 for t < 0:

If the input x.t/ is given by a collection of step functions as shown in Fig. 2.13b,
the response is written as

y.t/ D
X

i

�.t � ti /�xi : (2.241)

Then for a general form of the input function x.t/, we have

y.t/ D
Z t

�1
�.t � s/

dx.s/

ds
ds: (2.242)

This is referred to as Boltzmann’s superposition principle.

(a) After–effect function (b) Superposition principle

Fig. 2.13 Boltzmann’s hereditary integral
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Integrating (2.242) by parts yields

y.t/ D �.0C/ x.t/C
Z t

�1
d�.t � s/

ds
x.s/ ds 	

Z t

�1
�.t � s/ x.s/ ds (2.243)

where
�.0C/ D lim

t!C0 �.t/

and

�.t � s/ D d�.t � s/
ds

C ı.s/ �.s/ (2.244)

is referred to as the response function.7

2.9.2 Stress Relaxation and the Relaxation Spectra:
Generalized Maxwell Model

First we consider a simple uniaxial response. If a strain " is given by

".t/ D
(
0 for t < 0;

"0 for t > 0;
(2.245)

we write the relaxation stress as

�.t/ D E.t/"0; E.t/ D 0 for t < 0 (2.246)

where the after-effect function E.t/ is referred to as the relaxation function.
Following Boltzmann’s principle presented previously, if an input ".t/ is given, the
response can be written as

�.t/ D
Z t

�1
E.t � s/d".s/

ds
ds D

Z t

�1
ƒ.t � s/ ".s/ ds: (2.247)

The response of a viscoelastic material is generally represented as a model
containing a combination of elastic, viscous and pure stress-relaxation properties.
Then the relaxation function can be written as

E.t/ D E0 C �1 ı.t/CE.t/ (2.248)

7The definition of the ı-function is given by
R

 dy ı.y � x/f .y/ D f .x/.
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where E.t/ is a smooth, monotonically decreasing function such that

E.0/ D � < C1; E.C1/ D 0;

and can be represented by a Laplace transformation:

E.t/ D
Z 1

0

N.s/ exp.�st/ ds: (2.249)

In order to provide a discrete approximation of this function, the variable s is
changed into � by �D1=s. Then (2.249) can be written as

E.t/ D
Z 1

0

H.�/ exp.�t=�/ d.ln �/; (2.250)

H.�/ D 1

�
N

�
1

�

�

; (2.251)

andH.�/ is referred to as the relaxation spectrum.
Substituting (2.250) into (2.247) and changing the order of integration, we have

�.t/ D �0.t/C �1.t/C
Z 1

0

�.t; �/ d.ln �/; (2.252)

�.t; �/ D H.�/

Z t

�1
exp .�.t � s/=�/

d".s/

ds
ds; (2.253)

�0.t/ D E0 ".t/; �1.t/ D �1
d".t/

dt
: (2.254)

Differentiating (2.253)8 we obtain

H.�/
d".�/

dt
D d

dt
�.t; �/C 1

�
�.t; �/: (2.255)

8Leibnitz rule: If we have an integral of a continuous function f such as

�.x/ D
Z h1.x/

h0.x/

f .x; �/ d�;

and if h1.x/ and h0.x/ are continuous on R D f .x; �/ W a � x � b; c � � � d g, then

d�.x/

dx
D f .x; h1.x//

dh1.x/

dx
� f .x; h0.x//

dh0.x/

dx
C
Z h1.x/

h0.x/

@f .x; �/

@x
d�

(see, e.g., Protter and Morrey 1977, pp. 284).
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A mechanical representation of a simple Maxwell model is shown in Fig. 2.14a and
can be indicated in the same form as (2.255): i.e.

E
d"

dt
D d�

dt
C 1

�
�

where E and � are the elastic and viscous constants, respectively, and �D�=E is
referred to as the relaxation time. Thus we understand that (2.252) gives a synthesis
of each spectral response corresponding to � , and this suggests that, for a discrete
case, the generalized Maxwell model can be represented by Fig. 2.15a.

If the material is isotropic, the response can be written in both deviatoric and
volumetric forms:

s.t/ D 2

Z t

�1
G.t � s/de.s/

ds
ds; N� .t/ D 3

Z t

�1
K.t � s/d N".s/

ds
ds (2.256)

where

G.t/ D G0 C �s1 ı.t/CG.t/; K.t/ D K0 C �v1 ı.t/CK.t/; (2.257)

G.t/ D
Z 1

0

ˆs.�/ exp.�t=�/ d.ln �/; K.t/ D
Z 1

0

ˆv.�/ exp.�t=�/ d.ln �/:
(2.258)

a b

Fig. 2.14 (a) Maxwell
model, (b) Kelvin-Voigt
model

a b

Fig. 2.15 (a) Generalized
Maxwell model, (b)
generalized Kelvin-Voigt
model
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Since � .t/Ds.t/C N� .t/, the total response can be represented as

� .t/ D
Z t

�1

�

2G.t � s/
de.s/

ds
C 3K.t � s/d N".s/

ds

�

ds D
Z t

�1
D.t�s/d".s/

ds
ds:

(2.259)

2.9.3 Creep and the Retardation Spectra: Generalized
Kelvin-Voigt Model

Let us consider a simple uniaxial creep response. If a creep stress � is given by

�.t/ D
(
0 for t < 0;

�0 for t > 0;
(2.260)

and the corresponding strain response is written as

".t/ D J.t/ �0; J.t/ D 0 for t < 0; (2.261)

then for a general input �.t/ the strain response can be represented as

".t/ D
Z t

�1
J.t � s/

d�.s/

ds
ds D

Z t

�1
�.t � s/ �.s/ ds (2.262)

where J.t/ is referred to as creep function.
In the same way as we did for stress relaxation, we combine the instantaneous

elastic, viscous and pure stress-relaxation properties, and write the response as

J.t/ D J1 C t

�0
C J .t/ (2.263)

where J1 D1=E1. Since NJ .t/ is a smooth, monotone decreasing function, we have

J .0/ D 0; J .C1/ D � < C1:

Therefore it can be represented by a Laplace transformation:

J .t/ D
Z 1

0

M.s/ .1 � exp.�st// ds D
Z 1

0

L.�/ .1 � exp.�t=�// d.ln �/;
(2.264)

L.�/ D 1

�
M

�
1

�

�

: (2.265)

L.�/ is referred to as the retardation spectrum.
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Substituting (2.264) into (2.262) and changing the order of integration, we have

".t/ D "1.t/C "0.t/C
Z 1

0

".t; �/ d.ln �/ (2.266)

".t; �/ D L.�/

Z 1

0

.1 � exp.�.t � s/=�//
d�.s/

ds
ds; (2.267)

"1.t/ D J1 �; "0.t/ D 1

�0

Z t

�1
�.s/ ds: (2.268)

Differentiating (2.267), we obtain

L.�/�.t/ D �
d

dt
".t; �/C ".t; �/ (2.269)

The response of a simple one-unit Kelvin-Voigt model shown by Fig. 2.14b can be
written in a form similar to (2.269) as

J� D �
d"

dt
C "

where J D1=E and � are the elastic compliance and viscous constant, respectively,
and �D�=E is referred to as the retardation time. Thus we can see that (2.266)
gives a synthesis of each spectral response corresponding to � , and this suggests
that for a discrete case the generalized Kelvin-Voigt model can be represented by
Fig. 2.15b.

If the material is isotropic, the response can be given separately for the deviatoric
and volumetric deformations as follows:

e.t/ D 1

2

Z t

�1
B.t � s/ds.s/

ds
ds; N".t/ D 1

3

Z t

�1
C.t � s/d N� .s/

ds
ds (2.270)

where

B.t/ D B1 C t

�s0
C B.t/; C.t/ D C1 C t

�v
0

C C.t/ (2.271)

B.t/ D
Z 1

0

‰s.�/ .1 � exp.�t=�// d.ln �/;

C .t/ D
Z 1

0

‰v.�/ .1 � exp.�t=�// d.ln �/: (2.272)

Since ".t/De.t/C N".t/, the total response is thus represented as

".t/ D
Z t

�1

�
1

2
B.t � s/

ds.s/

ds
C 1

3
C.t � s/

d N� .s/
ds

�

dsD
Z t

�1
C .t�s/d� .s/

ds
ds:

(2.273)
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2.9.4 Relaxation and Retardation Spectra and Their
Asymptotic Expansion

The k-th derivative of (2.249) yields

E
.k/
.t/ D dkE.t/

dtk
D .�1/k

Z 1

0

N.s/sk exp.�st/ ds

where E
.k/

implies the k-time differentiation of E. Since sk exp.�st/ shows the
peak value at sDk=t and the value increases with k, we can replace it by the
ı-function so that we have

Z 1

0

sk exp.�st/ ds D kŠ

tkC1 :

Therefore we set

E
.k/
.t/ D .�1/k kŠ

tkC1

Z 1

0

N.s/ı.s � k=t/ ds D .�1/k kŠ

tkC1 N.k=t/:

Now we change the variable as tDk=s, and obtain

E
.k/
.k=s/ D .�1/kskC1 kŠ

kkC1 N.s/:

This gives a function N.s/, and, when k ! 1, we have the following asymptotic
form:

N.s/ D lim
k!1

.�1/k
kŠ

�
k

s

�kC1
E
.k/
.k=s/:

Since E is a function of k=s, and using (2.251) we have a functionH.�/ instead
of N.s/9:

H.�/ D 1

�
N

�
1

�

�

D lim
k!1

.�1/k
.k � 1/Š .k�/

k E
.k/
.k�/: (2.274)

Equation 2.274 shows that the relaxation spectrum H.�/ can be approximated by

H1.�/ D �� @E.�/
@�

; H2.�=2/ D �2
@2E.�/

@�2
; H3.�=3/ D ��

3

2

@3E.�/

@�3
; � � �

When using actual experimental data, the differentiation frequently involves
some numerical errors, therefore we can use either H2 or, more often, H1 for the
spectral approximation. The practical procedures will be given in a later section.

9Note that the differentiation implies E
.k/
.k�/ D dkE.k�/

d.k�/k
. Others are the same.
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The most important advantage of this procedure is that we can determine the
spectral points that govern the corresponding viscoelastic response, which gives
their coefficients, specified by the least squares method.

The retardation spectrum L.�/ of (2.264) is written as

L.�/ D lim
k!1

.�1/kC1

.k � 1/Š
.k�/k NJ .k/.k�/: (2.275)

For an isotropic material the relaxation spectra are given by

ˆs.�/ D lim
k!1

.�1/k
.k � 1/Š

.k�/k G
.k/
.k�/; ˆv.�/ D lim

k!1
.�1/k
.k � 1/Š .k�/

k K
.k/
.k�/;

(2.276)
and the retardation spectra are

‰s.�/ D lim
k!1

.�1/k
.k � 1/Š .k�/

k B
.k/
.k�/; ‰v.�/ D lim

k!1
.�1/k
.k � 1/Š

.k�/k C
.k/
.k�/:

(2.277)

2.9.5 Experiments for Determining Viscous Properties

Several experiments are used to determine the viscoelastic properties of a material:
creep tests (stress D constant), relaxation tests (strain D constant) and a constant
stress rate test. Figure 2.12 shows the loading paths of each test for the one-
dimensional case.

We first determine the creep function J.t/ based on the results of a creep test:
If the creep stress is given by (2.260), the response is given by (2.261), therefore
".t/DJ.t/�0. Let us assume that the relaxation spectrum is represented by the first
approximation of (2.275), i.e.,

L.�/ D �� @J .�/
@�

:

By substituting (2.261) into this result we have

L.�/ D � 1

�0
�
@".�/

@�
: (2.278)

We can then plot the values of (2.278) calculated by the creep curve shown, for
example, in Fig. 2.16. In this figure we specify discrete values �1; �2; : : :. Since the
discrete representation of (2.264) is given by

J .t/ D
X

i

Ji .1 � exp.�t=�i // ; Ji D L.�i / � ln �i ; (2.279)
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Fig. 2.16 Implication of
retardation spectrum

we can substitute the above �i ’s into (2.279), and, using (2.261) and (2.263), we
obtain the following:

".t/ D
"

J1 C t

�0
C
X

i

Ji .1 � exp.�t=�i //
#

�0: (2.280)

We now need a procedure to determine �0. From (2.280) the slope at the final
elapsed time t� is given by

1

�0

d"

dt

ˇ
ˇ
ˇ
ˇ
tDt�

D
X Ji

�i
exp.�t�=�i /C 1

�0
: (2.281)

Thus if �i 
 t�, we can specify the slope 1=�0. If �i � t�, the reader is referred to
Akagi (1980) for details of the method to specify �0.

If �i .iD1; 2; : : :/ and �0 are known, J1 and Ji .iD1; 2; : : :/ can be specified
by a linear least squares method. That is, setting the error estimate as

… D 1

2
�20

"

J1 C t

�0
C
X

i

Ji .1 � exp.�t=�i //
#2

; (2.282)

J1 and Ji can be calculated by solving the following simultaneous equations:

@…

@J1
D 0;

@…

@Ji
D 0; i D 1; 2; : : : (2.283)

For an isotropic material, the creep functionsB.t/ andC.t/ are determined using
the same procedure. For an axisymmetric triaxial stress state, let �1 be the axial
stress, �3.< 0/ (with �2D�3) the confining pressure, "1 the measured axial strain
and "3 the measured lateral strain. Then setting

s11 D 2

3
.�1 � �3/ D �2s22 D �2s33 	 q0; s23 D s31 D s13 D 0;

N� D 1p
3
.�1 C 2�3/ 	 p0;
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e11 D 2

3
."1 � "3/ D �2e22 D �2e33 	 "s; e23 D e31 D e13 D 0;

N" D 1p
3
."1 C 2"3/ 	 "v;

we have the following deviatoric and volumetric creep responses:

"s.t/ D 1

2
B.t/ q0; "v.t/ D 1

3
C.t/ p0: (2.284)

Due to (2.277), the first approximations of the relaxation spectra of each component
are given by

‰s.�s/ D � 2

q0
�s
@"s.�s/

@�s
; ‰v.� v/ D � 3

p0
� v @"

v.� v/

@� v
: (2.285)

Therefore the discrete relaxation times �s1 ; �
s
2 ; : : : ; �

v
1 ; �

v
2 ; : : : can be obtained by

creep curves (similar to Fig. 2.16). This gives the discrete forms of (2.272) as

B.t/ D
X

i

Bi
�
1 � exp.�t=�si /

�
; Bi D ‰s.�si / � ln �si

C .t/ D
X

i

Ci
�
1 � exp.�t=� v

i /
�
; Ci D ‰v.� v

i / � ln � v
i

(2.286)

and we obtain

"s.t/ D 1

2

"

B1 C t

�s0
C
X

i

Bi
�
1 � exp.�t=�si /

�
#

q0

"v.t/ D 1

3

"

C1 C t

�v
0

C
X

i

Ci
�
1 � exp.�t=� v

i /
�
#

p0:

(2.287)

Under the condition �si ; �
v
i 
 t�, �s0 and �v

0 can be specified by using the slopes of
the creep curves at the final time stage t� by

2

q0

d"s

dt

ˇ
ˇ
ˇ
ˇ
tDt�

:D 1

�s0
;

3

p0

d"v

dt

ˇ
ˇ
ˇ
ˇ
tDt�

:D 1

�v
0

: (2.288)

The coefficients B1 and Bi .iD1; 2; : : :/, C1 and Ci .iD1; 2; : : :/ can be
calculated by the least squares method where the error estimates are given by

…s D 1

8
q20

"

B1 C t

�s0
C
X

i

Bi
�
1 � exp.�t=�si /

�
#2

;

…v D 1

18
p20

"

C1 C t

�v
0

C
X

i

Ci
�
1 � exp.�t=� v

i /
�
#2

;
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which gives the simultaneous equations

@…s

@B1
D 0;

@…s

@Bi
D 0; (2.289)

@…v

@C1
D 0;

@…v

@Ci
D 0: (2.290)

Finally, we can see the relationship between the response given by the hereditary
integral form and that given by conventional creep laws such as the logarithmic form

".t/ D aC b ln t; (2.291)

and Norton’s power law
"

t
D a �n: (2.292)

Differentiating (2.291) yields

t
d"

dt
D b:

Therefore the logarithmic creep law employs an averaged relaxation spectrum for
all elapsed time (i.e., only one time-dependent mechanism is assumed) as shown in
Fig. 2.16, which may cause difficulty under real, complex situations such as the long
term behavior of rock. On the other hand the power law (2.292) gives

t
d"

dt
D t .a�n0 /

for a creep stress �0, which implies a linear distribution of the spectra (Fig. 2.16).

2.10 Small Strain Plasticity: Flow Theory

In this book we are considering porous materials. Therefore, the stress treated here
must be an effective stress � 0 D� CpI where � is the total stress, and p is the
pore fluid pressure. Note that in this section we are using the sign convention
for stresses adopted in continuum mechanics, therefore the tension stress/strain is
considered positive, and the pore fluid pressure is positive, since � 0 D�CpI (details
are described in Chap. 6). In this Section we denote the stress as � instead of the
effective stress � 0 for simplicity. Readers can see that all results in this section also
work for the effective stress. It should be noted that in this section the deviatoric
stress is denoted as s whereas in other expositions the deviatoric stress is written as
� 0. Similarly, the deviatoric strain is denoted as e.
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Symbols and notations used in this section are given below:

� (Total) stress tensor (tension: +)
I1 D tr .� / D �ii First invariant of stress
I2 D f.tr � /2 � tr .� 2/g=2 Second invariant of stress
I3 D det.� / Third invariant of stress
N� D tr .� /I=3 Volumetric stress tensor (tension, +)
N� D tr .� /=

p
3 Magnitude of volumetric

stress (tension, +)
s D � � N� Deviatoric stress tensor
s D jsj D .sij sij/

1=2 Norm of deviatoric stress
�� D 1

3
cos�1Œ3

p
3 J �3 =f2.J �2 /3=2g� Lode’s angle for stress

J2 D sijsij=2 D 2s2 Second invariant of deviatoric stress
J3 D det.s/ Third invariant of deviatoric stress
d" D d"e C d"p Strain increment tensor
d"e Elastic strain increment tensor
d"p Plastic strain increment tensor
d N"p D tr .d"p/I=3 Volumetric plastic strain increment

tensor
d N"p D tr .d"p/=

p
3 Magnitude of volumetric plastic

strain increment
dep D d"p � d N"p Deviatoric plastic strain increment

tensor
dep D jdepj D .de

p
ij de

p
ij /
1=2 Norm of deviatoric plastic

strain increment
� Hardening parameter

The result of a simple tension experiment for a metal is schematically shown
in Fig. 2.17 with axes of axial stress �1 and axial strain "1 or deviatoric stress s
and deviatoric strain e. In metals the volumetric plastic strain can generally be
ignored ( N"pD0); therefore we can treat the behavior as a uniaxial response. On
the other hand, the shearing behavior of geomaterials is inevitably accompanied by
volume changes that are plastic, therefore we have to modify the original flow theory
developed for metallic materials (Kachanov 2005; Lubliner 1990). Note that in small
strain plasticity we assume that the plastic increment d" can be decomposed into
incremental elastic and plastic components:

d" D d"e C d"p: (2.293)

2.10.1 Yield Function and Hardening Law

Let us denote the yield condition by

f .� ; �/ D 0 (2.294)
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Fig. 2.17 Uniaxial
stress-strain relationship

which includes the initial and subsequent yield surfaces (Fig. 2.17). Here � is the
hardening parameter which denotes a history of past stress and strain, and the
increment can be denoted by

d� D dW p D � W d"p W work hardening rule (2.295)

d� D j d"pj W strain hardening rule (2.296)

where dW p is an increment of plastic work. Note that the initial yielding condition
is given by f .� ; �D0/ D 0.

The yield function f .� ; �/ is classified into several hardening models depending
on the history of loading:

f .� ; �/ D f1.� /�K.�/ W isotropic hardening model (2.297)

f .� ; �/ D f1.� � ˛.�// W kinematic hardening model (2.298)

d˛ D c d"p Prager model

d˛ D c.� � ˛/j d"pj Ziegler model

f .� ; �/ D f1.� � ˛.�// � f2.�/ W anisotropic hardening model (2.299)

We illustrate the isotropic and kinematic hardening models for the one-
dimensional problem in Fig. 2.18a, b, and for the two dimensional problem in
Fig. 2.19. Note that the behavior shown in Fig. 2.18b is known as the Bauschinger
effect. In geotechnical engineering practice the isotropic hardening model is widely
used because, except in earthquake situations, it is rare that the loading direction is
completely reversed.

The stress-dependent part of the yield function has been widely investigated
using experimental methods. We summarize the results for the case of the isotropic
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Fig. 2.18 Axial stress-strain relations and hardening models

Fig. 2.19 Hardening model for a 2D problem

hardening (2.297) (see also Desai and Siriwardane 1984; Darve 1990; Davis and
Selvadurai 2002; Pietruszczak 2010):

f1.� / D p
J2 : von Mises

f1.� / D p
J2 C ˛I1 : Drucker-Prager
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f1.� / D j�1 � �3j : Tresca
�1 � �2 � �3 : principal stresses

f1.� / D ˙1

2
.�1 � �3/C 1

2
.�1 C �3/ � sin� � C cos�: Mohr-Coulomb

�: internal friction angle, C : cohesion
f1.� / D .I1/

3=I3 : Lade-Duncan
f1.� / D .I1I2/ =I3 : Matsuoka-Nakai
f1.� / D MD ln

�
p0=p0

0

�CD .q=p0/ : Roscoe (Cam clay model)
(For the Cam clay model we use the effective stress � 0.)
p0 D � 1

3
� 0
i i , q D �.�1 � �3/ D �.� 0

1 � � 0
3/ (�i ; � 0

i : positive for tension)
Under biaxial conditions, p0 D � 1

3
.� 0
1 C 2� 0

3/

p0
0: preload
M : slope of critical state line
D D .� � �/=M.1C e/

e D n=.1 � n/: void ratio
�: slope of normal consolidation line
�: swelling index (slope of unloading-reloading line)

The original Cam clay model employs isotropic hardening with strain hardening
such as

K.�/ D
Z

d�; d� D jd"pv j D
p
d"

p
v d"

p
v

(Schofield and Wroth 1968). Here eDn=.1�n/ is the void ratio, n is the porosity and
d"

p
v D � d"

p
i i is

p
3 times the volumetric plastic strain (positive for compression);

it is related to the void ratio e and plastic increment of the void ratio dep by

d"pv D � dep

1C e
:

2.10.2 Prager’s Consistency Condition

Subsequent yielding occurs at the stress �Cd� and plastic state �Cd� after the
initial yielding if the yielding condition

f .�Cd� ; �Cd�/ D 0

is satisfied. Using this with (2.294) results in

df D @f

@�
W d� C @f

@�
d� D 0: (2.300)
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This is Prager’s consistency condition. Substituting the work hardening law (2.295)
into (2.300) gives

@f

@�
W d� C @f

@�
� W d"p D 0 (2.301)

If we apply the strain hardening law (2.296), the consistency condition (2.300)
remains unchanged.

2.10.3 Flow Rule and Incremental Constitutive Law

Let g be a scalar function such that the plastic strain increment d"p can be obtained
as follows:

d"p D �
@g

@�
or d"

p
ij D �

@g

@�ij
(2.302)

This is referred to as the flow rule of plasticity. The parameter � is determined by
the hardening law (mentioned later).

The flow rule (2.302) implies that the direction of the plastic strain increment
d"p is normal to the surface g D constant, and coincides with the stress � . For
isotropic materials this can be described as follows. We introduce the unit tensors
(see Sect. 2.8.3) as

n.1/ D @ N�
@ N� D @ N�

@�
D N�

N� ; n.2/ D @s

@s
D @s

@�
D s

s
; n.3/ D 1

��

@��

@�
(2.303)

These are orthonormal as described in Sect. 2.8.3, which gives

d"p D �
@g

@�
D �

�
@g

@ N� n
.1/ C @g

@s
n.2/ C ��

@g

@��
n.3/

�

:

Therefore the direction of d"p coincides with the direction of the global stress � if
the material is isotropic.

Note 2.9 (Drucker’s stability postulate). If the response of an elasto-plastic body is
stable, the plastic work,W p , must be non-negative:

W p D
Z

.� � � 0/ W d"p � 0: (2.304)

This is referred to as Drucker’s stability postulate. Here � 0 is an arbitrary stress
which satisfies

f .� 0; �/ < 0:

The condition (2.304) is written in the local form as

.� � � 0/ � d"p � 0; (2.305)
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or by setting �D� 0Cd� we can write

d� � d"p � 0: (2.306)

Substituting the flow rule (2.302) into the inequality (2.305) gives

.� � � 0/ � � @g
@�

� 0:

Since � 0 is arbitrary, the above condition is satisfied if gDf (the associated flow
rule) and f is convex (Fig. 2.20). This gives a strong restriction for elasto-plastic
materials, especially for granular media, since most of the experimental data show
that if we apply the associated flow rule with a yield function, such as the Coulomb
or Drucker-Prager type, the dilatancy (i.e., the volume change due to shearing) is
over-estimated. �

The incremental constitutive equation for applying the flow rule can be obtained as
follows: Substituting the flow rule (2.302) into the consistency condition, we obtain

� D 1

h

@f

@�
W d� ; (2.307)

h D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

� @f

@W p
� W @g

@�
: work hardening

�@f
@�

ˇ
ˇ
ˇ
ˇ
@g

@�

ˇ
ˇ
ˇ
ˇ : strain hardening

(2.308)

where h is the hardening parameter, which will be determined later. Equation 2.307
is again substituted into the flow rule to give

d"p D 1

h

@g

@�

�
@f

@�
W d�

�

D 1

h

�
@g

@�
˝ @f

@�

�

d� (2.309)

Fig. 2.20 Drucker’s stability
condition
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where ˝ denotes the tensor product, and if @g=@� and @f=@� are represented as
vectors, it becomes

@g

@�
˝ @f

@�
D
�
@g

@�


 �
@f

@�


T
: (2.310)

Equation 2.309 can be written in the indicial notation:

d"
p
ij D 1

h

@g

@�ij

@f

@�kl
d�kl: (2.311)

Let C p be the plastic compliance tensor (cf. (2.309)) given by

C p D 1

h

@g

@�
˝ @f

@�
or C

p
ij D 1

h

@g

@�ij

@f

@�kl
; (2.312)

then we have
d"p D C pd� or d"

p
ij D C

p

ijkld�kl: (2.313)

Equation 2.309 (or 2.313) is referred to as Melan’s formula.
Since the plastic compliance tensorC p of (2.312), determined by the flow rule, is

represented by a product of two second-order tensors, the determinant is identically
zero (detC pD0, if we set the second-order tensors as vectors as mentioned in
(2.310)). Since it is not possible to obtain the inverse of C p directly, we use the
properties of the elastic complianceC e , which has the inverse, along with the direct
sum of the strain increment given by (2.293). That is,

d" D d"e C d"p D .C e C C p/ d� ;

) d� D Depd"; Dep D .C e C C p/�1 : (2.314)

Dep is determined explicitly as follows. Let

d� D Ded"e D De .d" � d"p/ D Ded" �De 1

h

@g

@�

�
@f

@�
W d�

�

: (2.315)

Taking the inner-product with @f=@� , the above gives

@f

@�
W d� D h

H

@f

@�
W Ded"; H D hC @f

@�
W
�

De @g

@�

�

: (2.316)

Using the symmetry property ofDe and substituting (2.316) into (2.315), we obtain

d� D Depd"; (2.317)

where

Dep D De � 1

H

�

De @g

@�

�

˝
�

De @f

@�

�

: (2.318)
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The indicial form ofDep is given by

D
ep

ijkl D De
ijkl � 1

H

�

De
ijmn

@g

@�mn

��

De
klst

@f

@�st

�

: (2.319)

We now need to determine the hardening parameter h. For simplicity we use the
isotropic hardening model (2.307), and from (2.308) we have

h D

8
ˆ̂
<̂

ˆ̂
:̂

@K

@W p
� W @g

@�
: work-hardening;

@K

@�

ˇ
ˇ
ˇ
ˇ
@g

@�

ˇ
ˇ
ˇ
ˇ : strain-hardening:

(2.320)

A function �.x/ is said to be m-th order homogeneous of x if, for any scalar t ,

�.tx/ D tm�.x/:

Then we have the following Euler’s theorem (cf. Note 3.8, p. 108):

x � @�
@x

D m�.x/

It should be noted that the von Mises .f1Dp
J2/ and Drucker-Prager .f1Dp

J2C
˛I1/ yield functions are first order homogeneous functions; however

f1 D J2 C ˛I1

is not a homogeneous function.
Let us apply the associated flow rule .gDf / and assume that f is anm-th order

homogeneous function, so that the work-hardening rule (2.320) can be written as

h D m
@K

@W p
f1: (2.321)

If we define the equivalent stress by

f1.� / D �e; (2.322)

and determine the equivalent plastic strain increment by

dW p D � W d"p 	 �e d"
p
e ; (2.323)

the hardening parameter can be specified by

h D m
@�e

@"
p
e

: (2.324)
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Let us now consider the physical implications of the equivalent stress and strain. For
metallic materials, which show no volumetric plastic straining, we have

� W d"p D s dep C N�d N"p D s dep:

where dep is the deviatoric plastic strain increment and d N"p is the volumetric
plastic strain increment, and therefore (2.323) is meaningful. However, for porous
materials that show a considerable amount of volumetric plastic strain the concept
of equivalent stress and strain defined by (2.323) is not appropriate. Note that in
the metallic plasticity theory, in order to utilize the result of simple tension we
sometimes define

�e D
p
3J2 .D �11/;

and introduce

d"pe D
r
2

3
dep W dep:

This, of course, causes an adjustment of the coefficients.



Chapter 3
Non-equilibrium Thermodynamics

We first review the principles of Classical Thermodynamics (see also Appendix D),
and proceed to give an alternative formulation of Thermodynamics in the context of
a true dynamical process.

3.1 Review of Classical Thermodynamics

Classical thermodynamics provides valuable information that can assist in the solu-
tion of practical problems in many fields of science and engineering. In particular,
when applied to coupled problems that include mechano-thermal and chemo-
thermal phenomena, it gives extremely valuable results (see e.g., de Groot and
Mazur 1962; Kestin 1979; Kondepudi and Prigogine 1998). An informative account
of thermodynamics of solids is given by Ericksen (1991).

Classical thermodynamics involves three central concepts: the principle of
conservation of energy (i.e., the First Law of Thermodynamics), the existence of
entropy (i.e., the first part of the Second Law of Thermodynamics) and the concept
of increasing entropy (i.e., the second part of the Second Law of Thermodynamics).
There are, however, some as yet unresolved issues in classical thermodynamics that
are open to interpretation.

The outline of the classical theory of thermodynamics for increasing entropy
is summarized as follows: First, certain equilibrium states are defined, and then
a transition process between equilibrium states is introduced for the purpose of
defining both reversible and irreversible processes. The latter process results in
the entropy increasing principle. Every thermodynamician states that “natural
phenomena are essentially irreversible”, but this is an axiom or postulate. It should
be noted that this principle was established as a basis for defining the efficiency of
a steam engine in the nineteenth century. The steam engine is a mechano-thermal
system that always involves some internal loss of energy. If we try to prove whether
the process is either reversible or irreversible through experimentation, we would
need to gain access to the system using a measuring device. However, it becomes

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
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impossible to prove theoretically whether the process is reversible or irreversible
because the measuring device itself can consume energy.

3.1.1 An Application of Classical Thermodynamics
for a Newtonian Fluid

We first consider the following mechano-thermal coupling problem in a fluid,
showing how classical thermodynamics may be applied within the framework of
the principle of conservation of energy.

Let � and p be the Cauchy stress and pressure (compression positive), respec-
tively. We first introduce the Kirchhoff energy stress � 
.x; t/ and the corresponding
pressure p
.x; t/ by

� 
 D �

�
; p
 D p

�
(3.1)

where � is the mass density.
Recall that the fluid is a material in which the residual stress, reduced by

the reversible part of the stress (i.e., the pressure), is dissipative and irreversible;
therefore, for an isotropic Newtonian fluid, we have

� � .�pI/ D �
�
� 
 C p
I

� D � .trD/I C �D (3.2)

whereD is the stretch tensor, � is the shearing viscosity, � D �C2�=3 is the bulk
viscosity and I is the unit tensor.

We assume that the internal energy u.v; s/ and Helmholtz free energy f .v; T /
exist. Here v is the volume, s is the entropy and T is the absolute temperature (details
of these variables will be discussed later). The increments are written as

� du D �p dv C � T ds; � df D �p dv � � s dT

) du D �p
 dv C T ds; df D �p
 dv � s dT (3.3)

Since �p dv=� D �p
 dv is the elastically stored internal energy due to stress, it
can be written as

due� D �p
 dv (3.4)

Since the entropy, s, can also be considered as a potential, at least in the classical
sense, we write s D s.v; T /. The increment is calculated as follows:

ds D @s

@v
dv C @s

@T
dT D � ˛

T
dv C 1

T
cv dT ) T ds D �˛ dv C cv dT (3.5)
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˛ D T
@

@v

�
@f

@T

�

; cv D @u.s.T //

@T

ˇ
ˇ
ˇ
ˇ
v

D T
@s

@T

ˇ
ˇ
ˇ
ˇ
v

(3.6)

where ˛ is the thermal pressure coefficient and cv is the isovolume heat capacity.
The change of internal energy du is produced by the change of the total internal

work � 
 W D dt and the change of heat dq:

du D � 
 W D dt C dq (3.7)

where W denotes the inner product of two second-order tensors. Using (3.5) and (3.7)
we have

cv dT D .� 
 W D dt � due� /C ˛ dv C dq D dq C .r1 C r2/ (3.8)

r1 D � 
 W D dt � due� D 1

�

�
� .trD/2 C �D W D	 dt (3.9)

r2 D ˛ dv (3.10)

The term r1 is the heat generated by deformation and r2 is that generated by entropy
change. Equation 3.8 results from classical thermodynamics, which represents a
coupling of mechano-thermal effects. In addition, we recall that the right-hand-side
terms of (3.2) give a dissipative stress; thus the ‘dissipation’ of this system can be
written as

dDDT ds � dq D .� 
 C p
I/ W D dt D 1

�

�
� .trD/2 C �D W D	 dt � 0

(3.11)

The relation (3.11), which is equivalent to the classical Clausius-Duhem inequality,
implies that the dissipative part of the internal work due to stress is converted into
heat. This suggests that the irreversible process of classical thermodynamics gives
a conversion of energy from one form to another. The result is evident, because its
framework is built on a potential theory.

Note that, in the above discussion, we have not yet used the second part of the
Second Law of Thermodynamics explicitly. The results are derived solely from
the First Law of Thermodynamics (i.e., the conservation of energy law), using the
thermodynamic potentials u.v; s/ and f .v; T /, where the first part of the Second
Law was used because in (3.3) we introduced the definition of entropy s.

3.1.2 The Role of the Second Law of Thermodynamics
in Classical Theory

As we observed in the preceding discussion, the framework of classical thermody-
namics is established on the basis of thermodynamic potentials - such as the internal
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energy, enthalpy, Helmholtz free energy and Gibbs free energy. The existence of
such potentials is assured by the first part of the Second Law of Thermodynamics.
This is the essence of classical thermodynamics. Recall that the Second Law of
Thermodynamics in the classical theory of thermodynamics consists of two parts
(see Kestin 1979; Raniecki 1976). In the first part, the existence of equilibrium
entropy and a thermodynamical (absolute) temperature is deduced for a class of
reversible processes, using Carathéodory’s Theorem. The second part states that
entropy increases in irreversible processes of adiabatic systems. We will not discuss
the details of the proof of the classical theory here, which can be found in Buchdahl
(1966) and Kestin (1979).

3.1.3 The Entropy Inequality in Classical Continuum
Mechanics

In theories of continuum thermodynamics, comprehensive procedures that formally
introduce the entropy inequality are commonplace. The schemes are classified
into two major groups: classical irreversible thermodynamics (CIT) and rational
thermodynamics (RT). The form of the entropy inequality is different in both
theories. Note that here the molecular-based discussions are disregarded because
of the basic assumption of a continuum formulation.

The fundamental hypothesis of CIT is the existence of a local-equilibrium
condition. A series of finite volume cells is considered in a material body, in which
local variables such as temperature and entropy are uniform and in equilibrium,
but time-dependent. The variables can take different values from cell to cell. The
majority of textbooks are written using this formulation (see, e.g., Kestin 1979,
which refers to this as the principle of local state). The most important result of
CIT under the local-equilibrium hypothesis is that, as a natural result of the Second
Law of Thermodynamics in the course of a mechano-thermal process, we have the
following entropy inequality:

�
ds

dt
� � 1

T
div q C �

r

T
(3.12)

where � is the mass density, q is the heat flux and r is the heat generation. The
local-equilibrium hypothesis, however, has an inevitable drawback for CIT, since
non-equilibrium processes, such as chemical reactions that are extremely important
in thermodynamics, cannot be treated within a framework that is based on local-
equilibrium states.

The basic framework of RT was developed by Truesdell and Toupin (1960) and
Coleman (1964), which excludes the local-equilibrium hypothesis (see Note 3.3,
p. 95). Let us define q=T as the entropy flux and r=T as the entropy supply. RT
introduces the rate of entropy production � in a part P of the body as



3.1 Review of Classical Thermodynamics 81

� D d

dt

Z

P
� s dv C

Z

@P

q

T
� nds �

Z

P

� r

T
dv; (3.13)

where n is the unit outward normal to @P . The implementation of the Second Law
of Thermodynamics requires that

� � 0: (3.14)

Consequently, the local form of (3.13) is obtained as

�
ds

dt
� �div


 q

T

�
C �

r

T
: (3.15)

This procedure is still followed in most of the recent works that utilize the RT
framework. However, as discussed in Note 3.3, p. 95, the RT theory contains an
inevitable shortcoming in that the understanding of the ‘entropy flux’ introduced
in that framework is difficult to justify physically. Thus no continuum mechanics
formulation has been successful in establishing a rational non-equilibrium thermo-
dynamics framework.

3.1.4 Note on the Proposed Framework

We will develop an alternative framework for examining non-equilibrium thermo-
dynamics processes in continuum mechanics. In this approach we invoke a strong
constraint of the entropy inequality, i.e., the second part of the Second Law of
Thermodynamics. The essence of the alternative framework is that the lost energy
in the sense of the classical irreversible process does not completely disappear but
it is converted into another form (fundamentally into heat, especially in a mechano-
thermal problem), and in most cases the lost energy is not measurable.

The entropy inequality is thus considered not as a universal law, but as a working
hypothesis for examining phenomena in a given thermodynamic system where
non-measurable energy components exist. This non-measurable energy occurs in
the entropy inequality, which is satisfied only in a local form (see Sect. 3.3.2).
In addition, following the original concept of Clausius (see Yamamoto 1987, p. 390),
we show that the second part of the Second Law of Thermodynamics is represented
as a positive definite condition for the heat flux. The resulting framework is simple
but noteworthy.

It is important to note that an irreversible process is essential in classical theories
of thermodynamics, since the entropy inequality is derived for this irreversible
process. However, the concept of reversible and irreversible processes plays no role
in our framework, because the energy conversion process described by the First Law
of Thermodynamics is essential, and the entropy inequality is not formulated as a
universal law as mentioned above.
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3.2 Conservation of Energy: The First Law
of Thermodynamics

Energy can be imparted to a system in several forms, which are mutually convertible
(Fig. 3.1). In this Section the conservation of energy law, that is the First Law
of Thermodynamics, for mechanical and heat energies is discussed as a typical
example. The First Law of Thermodynamics asserts that both mechanical and heat
fluxes contribute to the increase of internal energy. Here the energy, power and mass
flux received from the surroundings are denoted as positive except for the heat flux,
which follows the classical thermodynamics convention.

3.2.1 Stokes’ Power Formulation as Mechanical Conservation
of Energy in a Continuum: Eulerian Description

We derive the conservation law of mechanical energy, referred to as Stokes’ power
formula, starting with the following equation of motion in an Eulerian framework:

�
dv
dt
.x; t/ D �

�
@v
@t

C v � grad v
�

D div � T .x; t/C � b.x; t/: (3.16)

In an isolated or closed system the above conservation law of linear momentum is
satisfied under mass conservation.

The work per unit volume d
 � 
 due to the body force b at a position x 2 

can be written as

Fig. 3.1 Several forms of energy and their mutual conversion



3.2 Conservation of Energy: The First Law of Thermodynamics 83

Z

x2d

� b � dx D

Z

t

� b � dx
dt

dt D
Z

t

� b � v dt;

while the work per unit area d.@
/ � @
 due to the traction t 2 @
 at a position
x 2 
 can be written as

Z

x2d.@
/
t � dx D

Z

t

t � dx
dt

dt D
Z

t

t � v dt:

Then the total work W given for the body
 with a surface @
 is denoted as

W D
Z




�Z

t

� b � vdt
�

dv C
Z

@


�Z

t

t � vdt
�

ds

D
Z

t

�Z




� b � vdv C
Z

@


t � v ds
�

dt:

The power input to the body is given by

dW
dt

D
Z

@


t � vds C
Z




� b � v dv: (3.17)

Let us construct an inner product with a velocity v.x; t/ in the equation of motion
(3.16), and recall that (using the symmetry of � )

�
dv
dt

� v D �
d

dt

�
1

2
v � v

�

; .div � / � v D div .� v/� � W D;

and integrate this to obtain

Z




�
d

dt

�
1

2
v � v

�

.x; t/ dv D
Z

@


t � v ds C
Z




� b � vdv �
Z




� W D dv (3.18)

where � WD D tr.� TD/, and D D . PFF �1/sym D .grad v/sym is the stretch tensor
defined by (2.70). We applied the divergence theorem to the first term of the r.h.s. of
(3.18) under the condition � v � n D v � � T n D v � t. Equation 3.18 is known as
Stokes’ power formula in an Eulerian frame.

We define the kinetic energy by

K D
Z




� � dvI � D 1

2
v � v (3.19)
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where �.x; t/ is the kinetic energy per unit mass (i.e., specific kinetic energy). The
rate of the internal mechanical energy (or internal work) dU�=dt due to stress,1 and
the rate of its specific value du�.x; t/=dt are defined by

dU�
dt

D
Z




�
du�
dt

.x; t/ dv; (3.20)

�
du�
dt

.x; t/ D � W D D � � 
 W D (3.21)

) du�
dt

.x; t/ D � 
 W D; � 
.x; t/ D � .x; t/

�
(3.22)

where � 
.x; t/ is the Kirchhoff energy stress (i.e., Cauchy stress per unit mass). It is
noted that in deriving (3.20) we have used the following mass conservation law:

d�

dt
C � div v D 0: (3.23)

We recognize that dU� consists of an elastic part dU e� (i.e., a mechanically
reversible part) and an inelastic part dU i� (i.e., a mechanically irreversible part),
and the rate of its specific value du� .x; t/ also consists of due� .x; t/ and dui� .x; t/

2:

dU�
dt

D dU e�
dt

C dU i�
dt

; (3.24)

dU e�
dt

D
Z




�
due�
dt

.x; t/ dv;
dU i�
dt

D
Z




�
dui�
dt

.x; t/ dv; (3.25)

du�
dt

D due�
dt

C dui�
dt

: (3.26)

In the above, U� is known as the strain energy, and ue� .x; t/ and ui� .x; t/ are
its specific values referred to the deformed body. Note that the mechanically
irreversible part of the internal energy dU i� =dt is eventually transformed into heat.

With the above definitions, Stokes’ power formula (3.18) can be written as

dEœ

dt
D dK
dt

C dU�
dt

D dW
dt

(3.27)

1The rate of the internal mechanical energy dU� =dt due to stress is frequently referred to as the
rate of internal work and is written as dW� =dt . The rate of its specific value du� .x; t /=dt is
similarly written as dw� .x; t /=dt .
2Since the stretch tensor D may be decomposed into a reversible (i.e., elastic) part De and an
irreversible (i.e., inelastic) partD i (DDDeCDi ), (3.26) is valid. However this decomposition is
not unique. We do not discuss the details here (see Raniecki and Nguyen 2005).
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where E� .D K C U� / is the total mechanical energy in the absence of thermal and
chemical effects. Note that (3.27) is equivalent to the equation of motion (2.104).
We can write (3.27) in an incremental form:

dE� D dK C dU� D dW : (3.28)

Stokes’ power formula expresses the relationship that the rate of ‘total mechan-
ical energy’ is equal to the rate of kinetic energy plus strain energy (i.e., elastic
and inelastic energies), which is equal to the ‘power input’ in the absence of a
heat supply; we understand here that the change of energy dE� is equivalent to
the corresponding energy flux (in the above case, the power input dW).

It is important to characterize the physical law in (3.18): i.e., the mechanical
energy must be transferred smoothly. Then if we formulate a constitutive law, a
condition is required for the constitutive equation such as positive definiteness

� W D � 0 (3.29)

for a given set of state variables.

Note 3.1 (The small strain theory). Under the assumption of small strains we have

� W D D � W P" or � 
 W D D � 
 W P";

then (3.20) is given by

du�
dt

D � 
 W D D � 
 W d"
dt

) du� D � 
 W d": (3.30)

It is understood that under the small strain state the variable of u� is " and du� is
composed of the increments of the extensive variable " and the intensive variable � 


(see Appendix D for the definition of the extensive and intensive variables).
The rate of strain d" is decomposed into the elastic part d"e and the inelastic

part d"i:

d" D d"e C d"i ; (3.31)

du� D due� C dui� ; due� D � 
 W d"e; dui� D � 
 W d"i : (3.32)

Using (3.32)2 we can calculate � 
 as a differential of u� with respect to "e . Details
are found in Sect. 3.4. �



86 3 Non-equilibrium Thermodynamics

3.2.2 Generalized Strain Measure and its Conjugate Stress
in a Continuum |

As shown in the small strain theory (3.30), the increment of internal energy du�
is formed as a pair of stress � 
 and strain increments d". This fundamental
requirement allows us to introduce a Legendre transformation to construct the
energy u under the inner product of the ‘duality pair’ of stress � 
 and strain " (cf.
Sect. 3.4.1). Here we consider the duality pair of the general strain measure and its
energy-conjugate stress for the case of a finite strain field following Raniecki and
Nguyen (2005) (cf. Note 2.4, p. 21).

As shown in (2.46) the deformation gradient is decomposed by a polar decom-
position as F D RU D VR. Since U is positive definite, the characteristic form is
given by

U D P

i

�i N i ˝N i :

The Lagrangian strain measure E.n/ is introduced by using �i ; N i as

E .n/ D
X

i

.�i /
2n � 1

2n
N i ˝N i : (3.33)

Note that Green’s strain corresponds to the case E.1/ as mentioned previously
(E D E.1/).

From (3.20) we have � du�=dt D � WD, and substitutingD D F �T PEF �1 from
(2.71), we obtain 3

�
du�
dt

D � W F �T PEF �1 D F �1�F �T W PE D T

J
W PE

where we have used the definition of the second Piola-Kirchhoff stress T D
JF �1�F �T (cf. (2.112)). Recalling that J D �0=�, we obtain

du�
dt

D � 
 W D D T 
 W PE ; � 
 D �

�
; T 
 D T

�0
(3.34)

3�D�ij ei ˝ ej ; PED PEIJEI ˝EJ . From (2.39) we obtain

F�T PEF�1 D @XI

@xi
PEIJ @XJ

@xj
ei ˝ ej ; F�1�F�T D @XI

@xi
�ij
@XJ

@xj
EI ˝EJ

The inner product of second order tensors A; B is given by A WBD tr .ATB/; thus (3.34) can be
proved.
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It is understood that the density function of the second Piola-Kirchhoff stress T 
 D
T


IJE I ˝EJ is the ‘energy-conjugate’ or ‘dual’ stress to PE under the definition of

the increment of internal energy du� D � 
 WD. Note that the r.h.s. term of (3.34)1,
T 
 W PE , is denoted by a Lagrangian description (cf. Sect. 2.7).

The result (3.34) can be extended by introducing the rate of the generalized
Lagrangian strain measure PE.n/:

du�
dt

D � 
 W D D T 
.n/ W PE.n/ (3.35)

where T 
.n/ is the generalized Lagrangian stress which is energy-conjugate
to PE.n/.

For the case of the generalized Eulerian strain measure e.n/ the procedure
adopted is more complicated. Detailed discussions are not given, only the results.
If the generalized Eulerian strain measure is given by e D RERT as (2.63), the

corotational rate given by !R is read as DRe=Dt D ı
e, and the energy-conjugate

corotational Euler stress is calculated as tE
 D RT 
RT :

du�
dt

D � 
 W D D tE
 W ı
e: (3.36)

Furthermore, if the material body is isotropic, (3.36) is satisfied for any corotational
rate DQe=Dt under the arbitrary spin � D PQQT ; then we can define the internal
energy rate for the material derivative Pe and the same corotational Eulerian stress as
follows:

du�
dt

D tE
 W DQe

Dt
D tE
 W Pe: (3.37)

For the deformed body (i.e., Eulerian description) we can introduce a Legendre
transformation; it should be noted that material isotropy is imposed. In the analysis
of finite strain problems the updated Lagrangian equilibrium equation, which is a
form of an Eulerian description (cf. Sect. 2.6.2) is usually used, meaning that the
body is required to be isotropic.

3.2.3 Stokes’ Power Formula in a Continuum: Lagrangian
Description |

Recalling Nanson’s relation nds D J F �TN dS given by (2.86) and the relation
�0 D � J , we have the following Lagrangian description of power:

dW
dt

D
Z


0

�0 b � v.X ; t/ dV C
Z

@
0

t0 � v.X ; t/ dS (3.38)
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where t0 D…TN as defined by (2.109), and…D JF �1� is the first Piola-Kirchhoff
stress. Using (3.35), the Lagrangian form of Stokes’ power formula is obtained as
follows:

Z


0

�0
d

dt

�
1

2
v � v

�

.X ; t/ dV D
Z


0

�0 b�v dV C
Z

@
0

t0 �v dS�
Z


0

�0 T

 W PE dV:

(3.39)

3.2.4 First Law of Thermodynamics in a Thermo-mechanical
Continuum: Conservation of Mechanical and Thermal
Energies

In addition to the mechanical field we can also consider a thermal energy field
with a heat supply Q. If heat is supplied at a rate dQ=dt , the rate of reversible
internal energy dU=dt consists of both the mechanical and heat contributions, and
the conservation of energy law can be written as

dE
dt

D dK
dt

C dU
dt

D dW
dt

C dQ
dt
; (3.40)

or alternatively
dE D dK C dU D dW C dQ: (3.41)

This gives the First Law of Thermodynamics indicating that there is conservation
of mechanical and thermal energies. It should be noted that the rate of heat supply
dQ=dt is the flux of thermal energy.

Stokes’ power formula (3.27), which was derived from the equation of motion,
is also satisfied as

dE�
dt

D dK
dt

C dU�
dt

D dW
dt

: (3.42)

By subtracting (3.42) from (3.40) we obtain the following:

dU
dt

D dU�
dt

C dQ
dt
; (3.43)

which we refer to as the dissipative energy law.
As shown in (3.24), the increment of the internal mechanical energy dU� of

(3.43) can be divided into the mechanically reversible part dU e� and the mechan-
ically irreversible part dU i� , i.e., dU� D dU e� C dU i� . Therefore, by substituting
(3.24) into (3.43), we obtain the following incremental form:

dU � dU e� D dU i� C dQ: (3.44)
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The l.h.s. of (3.44) gives a term for the change of the internal energy due to heat,
which is denoted as dUq:

dUq D dU � dU e� ; (3.45)

since the change of mechanically reversible energy dU e� is subtracted from the
change in the total reversible internal energy dU (note that dU involves both
mechanical and heat effects). From (3.44) and (3.45), the dissipative energy law
(3.43) is written as

dUq D dU i� C dQ: (3.46)

We can clearly understand the physical implication of (3.46): The change of internal
heat energy dUq consists of two parts; i.e., the change of irreversible internal
mechanical energy dU i� and the heat supply dQ due to an energy flux.

If chemical and electromagnetic energies are supplied to the body, the conser-
vation of energy law and the dissipative energy law are of the same form but
require additional energy fluxes in the r.h.s. terms of (3.40) and (3.43) to account
for chemical and electromagnetic phenomena.

3.2.5 First Law of Thermodynamics in a Thermo-mechanical
Continuum: Eulerian Description

If the internal energy U is sufficiently smooth, there exists a corresponding density
function u such that

U D
Z




� u.x; t/ dv (3.47)

The heat flux dQ=dt is written as

dQ
dt

D �
Z

@


q � nds C
Z




� r dv (3.48)

where q is the heat flux per unit area flowing outward from the surface (as a
convention of thermodynamics, q is plus-signed for an out-flux) and r is the heat
source generated in a unit mass. Thus the First Law of Thermodynamics can be
written as

d

dt

Z




�
1

2
�v � v C � u

�

dv D
Z

@


t � vdsC
Z




�b � vdv �
Z

@


q �ndsC
Z




� r dv:

(3.49)
Applying the divergence theorem to the third term of the r.h.s. and using Stokes’
power formula (3.18), we obtain the following local Eulerian form of the dissipative
energy equation:

�
du

dt
D � � 
 W D � div q C � r D �

du�
dt

� div q C � r; (3.50)

and (3.50) gives the local form of (3.43).
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3.2.6 First Law of Thermodynamics in a Thermo-mechanical
Continuum: Lagrangian Description |

From (3.47), the internal energy in Eulerian and Lagrangian descriptions is

U D
Z




� u.x; t/ dv D
Z


0

�0 u.X ; t/ dV: (3.51)

The heat flux dQ=dt in the Lagrangian description is written by substituting
Nanson’s relation nds D J F �TN dS into (3.48); i.e.

dQ
dt

D �
Z

@
0

q0 �N dS C
Z


0

�0 r dV; q0 D J F �1q: (3.52)

The external power in the Lagrangian description is given by (3.38). Then the First
Law of Thermodynamics in the Lagrangian description is written as

d

dt

Z


0

�
1

2
�0v � v C �0 u

�

dV D
Z

@
0

t0 � v dS C
Z


0

�0b � v dV

�
Z

@
0

q0 �N dS C
Z


0

�0 r dV: (3.53)

The divergence theorem is applied to the third term of the r.h.s. of this equation and
substitution of Stokes’ power formula gives the following Lagrangian form of the
First Law of Thermodynamics (local balance of energy):

�0
du

dt
.X ; t/ D �0 T


 W PE � Div q0 C �0 r (3.54)

where T 
 D T =�0 is the second Piola-Kirchhoff stress per unit mass.

3.3 Second Law of Thermodynamics

In classical thermodynamics, the Second Law consists of two parts (see Kestin
1979). The first part defines the entropy for ‘reversible’ processes based on
Carathéodory’s theorem. The latter part concludes that entropy increases in all
‘irreversible’ processes. Recall that, as discussed in Sect. 3.1, the terminologies
of the reversible and irreversible processes are used here in the sense of classical
thermodynamics; however, in this Section irreversible processes acquire a different
interpretation to that used in the classical sense. That is, we may be able to introduce
an apparent irreversible process for the case that considers a non-measurable energy,
which will be discussed in more detail in Sect. 3.3.2.
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First we need to show the existence of entropy based on the auxiliary conser-
vation of energy law (3.50). We will then indicate that irreversible processes, in
the sense of the present work, result in an observational problem with any non-
measurable data.

3.3.1 Thermal Energy and the Existence of Entropy: The First
Part of the Second Law of Thermodynamics

Recall from (3.26) that du� D due�Cdui� . Thus (3.50) can be written as

�
d

dt
.u � ue� / D �

dui�
dt

� div q C � r (3.55)

The r.h.s. of (3.55) describes a heat supply including a heat source r and the heat
generated by the inelastic deformation dui� , while the l.h.s. shows the corresponding
rate of internal energy due to these sources, which is written as

duq
dt

D d

dt
.u � ue� /: (3.56)

The incremental form duq can be represented by a set of functions .T �; s�/
where T � is an empirical temperature and s� is the corresponding entropy. Since
T � and s� are not independent, we have either the form duq DT � ds� or the form
duq D s� dT �. As to which form is preferable depends on how T � and s� are
defined physically.

Based on experience it is easier to introduce the temperature T � first, and since
duq is known from the above discussions, the increment of entropy ds� can be
defined by

ds� D duq
T � :

It is easily observed that the above representation is not unique. 4 We can choose
the absolute temperature T instead of the empirical temperature T �, and the

4Suppose that we have a function f such that s�Df .s�/, and set

T � D T �

df .s�/=ds�
:

This is equivalent to
T � ds� D T � ds�:

Thus the representation (3.57) is not unique.
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corresponding entropy increment is ds, giving

ds D duq
T
: (3.57)

Here we should note that from (3.57) we cannot determine the absolute value of s,
which is specified by virtue of the Nernst Heat Theorem (i.e., the Third Law of
Thermodynamics):

s ! 0 as T ! 0: (3.58)

Then (3.50) can be rewritten as

�
duq
dt

D � T
ds

dt
D �

dui�
dt

� div q C � r: (3.59)

Another representation for duq is based on the Boltzmann formula

s D kB lnW (3.60)

where kB is Boltzmann’s constant and W is the most probable configuration of the
system. If we first know the entropy from (3.60), we can introduce the temperature
increment dT by

dT D duq
s
: (3.61)

This gives another interpretation of thermodynamics. However we will not discuss
it further here.

3.3.2 Entropy Inequality: Second Part of the Second Law
of Thermodynamics

The classical notation of thermodynamical equilibrium has no role in the proposed
framework since all the phenomena are treated as non-equilibrium dynamical
processes.

In classical thermodynamics it is important to distinguish whether a process is
reversible or irreversible, since the entropy inequality is established for irreversible
processes (the second part of the Second Law of Thermodynamics). In Sect. 3.1.1,
the classical theory was formulated within the framework of thermodynamic
potentials and the total internal energy is conservative but converted from one form
to another. In the classical theory this conversion process is defined as an irreversible
process.
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The definition of either reversible or irreversible processes is not meaningful in
the present framework; since the theory is also built on thermodynamic potentials,
the energy is fundamentally conservative, and in the irreversible process there
are some energy components that are undetected by the measuring device. It
should be noted that the material body treated here may not be homogeneous and
experiences dynamic processes, and thus we have to consider that heat, which flows
out/in from the boundary during the ‘reversible process’. In this interpretation the
entropy inequality is not considered as a universal law, but as a working hypothesis
when examining phenomena in a given thermodynamic system where some non-
measurable energy components exist. Furthermore, following the original concept
of Clausius (see Yamamoto 1987, p. 390), it is concluded that the second part of the
Second Law of Thermodynamics gives a condition of positive definiteness of the
heat flux term.

The preceding discussion is applicable to all chemical processes. Note that a
chemical process consists of a combination of reaction and diffusion of mass and
heat; the chemical reaction is caused by a change of electron orbits, which is
of course a conservation of energy process. In the diffusion process, masses and
energies are transferred to alternative positions and/or some energy is converted
into another form.

3.3.2.1 Inequality for a Non-measurable Energy

The question arises as to whether or not irreversible processes exist in the framework
proposed. The answer is affirmative for real systems. Every measuring system
involves certain errors; even if the measuring system is perfect, it uses a certain
amount of energy in the measurement process itself. For example, consider a viscous
fluid which is flowing in a channel. It is difficult to measure the temperature
distribution at all positions in the fluid, since an inherent energy conversion process
occurs from a mechanical form to heat due to viscous dissipation in the fluid
(cf. Sect. 3.4.4). Thus a certain amount of heat energy can be omitted even though
it exists in the fluid. This results in an apparent irreversible process, which can be
accounted for in our framework.

We now examine an implication of (3.59). Let us first rewrite it as

� T
ds

dt
� �

dui�
dt

D �div q C � r: (3.62)

The problem is formulated as follows: the terms dui� , q, r and the temperature T
can be determined, whereas the unknown variable is the entropy increment ds. If
all the known variables are correctly measured and evaluated, the entropy can then
be correctly estimated, and the equation (3.62) is satisfied. However in an actual
mechano-thermal system, the measured data are not always perfect. For example,
the term dui� =dt � 0 is usually disregarded in classical thermodynamics. If this
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term is not taken into account, the ‘measured’ entropy rate ds=dt becomes larger
than the true value. Thus we have

�
ds

dt
� � 1

T
div q C �

r

T
: (3.63)

In fact, as mentioned in Sect. 3.1.3, the CIT theory introduces this entropy inequality
(3.63), which is known as the Clausius-Duhem inequality. A similar situation to that
described for the case of a viscous fluid occurs, for example, in heat engines, where
the energy loss due to friction between metals is difficult to quantify.

We can state that the entropy inequality (3.63) is applicable if measured data
are provided imperfectly. This is the physical background to the second part of
the Second Law of Thermodynamics, which is necessary for application to real
thermodynamical systems.

If (3.62) is satisfied, the inequality (3.63) simply implies

dui�
dt

� 0: (3.64)

In conclusion, if a component of energy is expected to be non-measurable in a
real system, the entropy inequality needs to be written in the following form:

ds

dt
� 1

T

dui�
dt

� 1

�T
div q C 1

T
r: (3.65)

Here we assume that the inelastic energy dui�=dt is partially measured.
If the inequality (3.65) is satisfied, the apparent irreversible process in the

mechano-thermal system could be caused by the fact that some of the energy is
released from the system, for example as electro-magnetic radiation, in a non-
measurable way. It is also noted that, in the pure mechano-thermal problem, only
equality has a sound physical implication; the entropy increasing inequality (3.65)
does not correspond to a universal law but suggests that there exist some non-
measurable energy components.

Note 3.2 (Classical theories of entropy inequalities). In the CIT theory of contin-
uum mechanics, the entropy inequality is given by (3.63) and thus can be satisfied
only if the term dui�=dt is disregarded.

In the RT theory, the entropy inequality is regarded as a fundamental and
universal principle. The entropy S of a part P � 
 is given and the entropy
inequality is satisfied:

dS
dt

� �
Z

@P

q

T
� n ds C

Z

P
�
r

T
dv (3.66)

where q=T is the entropy flux and r=T is the entropy source in a thermodynamical
system. By using the entropy density, s, we obtain the following local form of the
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classical Clausius-Duhem inequality:

�
ds

dt
� �div


 q

T

�
C �

r

T
(3.67)

(cf. Coleman 1964, p. 15; Leigh 1968, Sect. 7.9). The inequality (3.67) is not
physically admissible in the defined mechano-thermal problem since the entropy
flow q=T is introduced without consideration of the exact physical significance.

Since we have div .q=T / D Œdivq�q �grad .lnT /�=T and (3.62), the inequality
(3.67) is equivalent to

�
dui�
dt

� q � grad .lnT / � 0: (3.68)

The classical thermodynamics theory states that since the inequality (3.70) is
satisfied for all state variables including the temperature T , it is equivalent to the
following two conditions:

dui�
dt

� 0 and � q � grad .lnT / � 0: (3.69)

If we introduce Fourier’s law for an isotropic material

q D �k gradT (3.70)

where k is the thermal conductivity, the inequality (3.69)2 gives k�0.
However, the conditions given by (3.69) are necessary for (3.68) but not

sufficient. We should treat the condition (3.68) as a constraint for the governing
equations (3.16) and (3.50), though the classical process resulting in the entropy
inequality (3.68) involves some doubt in the context of a physical understanding of
entropy flux. �

Note 3.3 (On the theory of entropy production). Following the theory of entropy
production proposed by Prigogine (1967) (cf. Sect. D.4.4), we have the Second Law
of Thermodynamics in the form

ds D dse C dsi ; dsi � 0: (3.71)

This is known as the theory of entropy production. The essential discussion of this
procedure is that (3.71) is derived locally since the second part of the Second Law
of Thermodynamics is not a universal law but a working hypothesis concerned with
the observation of the thermal field.

From (3.56) and (3.57) we have

du

dt
D due�

dt
C duq

dt
D due�

dt
C T

ds

dt
(3.72)
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because in the theory of entropy production the change of internal energy du should
be dependent on dse . Substituting (3.71)1 and (3.72) into the inequality (3.71)2, and
substituting the auxiliary conservation of energy equation (3.50) into it, we obtain
the following Clausius-Duhem inequality

ds

dt
� 1

T

dui�
dt

� 1

� T
div q C r

T
: (3.73)

This is the Second Law of Thermodynamics (for a continuum) following the theory
of entropy production.

It is noted that (3.73) is equal to (3.65), which implies that the entropy production
dsi is caused by a non-measurable part of energy. Until now, no physical interpreta-
tion of entropy production has been given, but using the present framework makes
it clear. This is the rationale for the development of this particular approach. �

3.3.2.2 Positive Definiteness of the Heat Flux

The original proposal of Clausius for the Second Law of Thermodynamics was to
formulate the fact that heat flows from a position of higher temperature to a lower
one (Yamamoto 1987). In this sequence it is natural to introduce the condition of
positive definiteness for the heat flux as the second part of the Second Law of
Thermodynamics.

Let 
�R
n be a material body with a boundary @
T having the temperature OT

and a boundary @
q having the flux Oq (Rn is the n dimensional real number space).
Let V D ˚

T 2H1
T .
/I T D OT on @
T

�
and V0 D ˚

�2H1
0 .
/I � D 0 on @
T

�

where H1
T .
/ and H1

0 .
/ are the Sobolev subspaces of the Hilbert space L2.
/.
The weak form of (3.62) for the temperature T is given by

Z




�

�

�

T
ds

dt
� dui�

dt
� r

�

�

�

dv C
Z

@
q

Oq � ds

�
Z




q � grad� dv D 0I 8� 2 H1
0 .
/: (3.74)

We can then introduce the following positive definite condition for the heat flux q,
which indicates that heat is flowing from the higher temperature location to the
lower in the body
:

�
Z




q � gradT dv � 0 (3.75)

for all temperatures T satisfying the boundary condition T D OT on @
T , their
derivatives @T=@xi ; � � � and internal parameters �i , which designate the history of
temperature and/or stress. If we introduce Fourier’s law qD � k gradT for an
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isotropic material (where k is the thermal conductivity), the condition (3.75) implies

k � 0: (3.76)

Note 3.4 (On the constitutive relation and the Second Law of Thermodynamics).
The Second Law of Thermodynamics essentially gives a relationship between the
heat flux q that is externally supplied and the induced temperature field. Some
scientists have stated that constitutive relations that depend on fields other than the
temperature can also be derived by the Second Law; however, as shown above, the
Second Law does not consider fields other than the heat flux and temperature. All
the constitutive relations can be derived from the First Law of Thermodynamics,
internal energy and thermodynamic potentials induced by Legendre transformations
(see Sect. 3.4). �

3.3.3 Second Law of Thermodynamics in a Thermo-
mechanical Continuum: Lagrangian Description |

As we did for the case of the First Law of Thermodynamics we can obtain the
Second Law of Thermodynamics (Clausius-Duhem inequality) in a Lagrangian
description. The entropy density in a Lagrangian description can be written as

S D
Z




� s.x; t/ dv D
Z


0

�0 s.X ; t/ dV (3.77)

By using this, (3.65) is converted to a Lagrangian description:

ds
dt
.X ; t/ � 1

T
dui� . PE i

; t/ � 1

�0T
Div q0 C r

T
; q0 D J F �1q (3.78)

The term dui� . PE i
; t/ D T 
 W PE i

must be discussed in detail; however it is a topic
that is best discussed in the context of a theory of finite strain plasticity (see, e.g.,
Lubarda 2000, 2004; Selvadurai and Yu 2006).

3.4 Thermodynamic Functions

The internal energy is transformed into several energy forms (i.e., thermodynamical
potential functions) through the Legendre transformation. Here we introduce the
Legendre transformation and consider the various energy forms. In this Chapter it
is understood that the entropy inequality is not a physical law and the conservation
of energy law is fundamental; therefore we do not divide the entropy increment as
ds D dseCdsi but simply we set ds D dse .
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3.4.1 Legendre Transformation and Convex Functions

Let us consider two smooth, differentiable functions5 �.x/ and  .y/. If they are
related by

y D @�

@x
; x D @ 

@y
; (3.79)

they are said to be conjugate. Obviously the above relation is equivalent to

�.x/ D
Z x

0

y � dx;  .y/ D
Z y

0

x � dy: (3.80)

Then �.x/ and  .y/ are related by the following Legendre transformation:

�.x/ D x � y �  .y/;  .y/ D x � y � �.x/: (3.81)

A function �.x/ is convex if, for any x1 and x2, we have

�..1� �/x1 C �x2/ 
 .1 � �/�.x1/C ��.x2/ (3.82)

where � 2 Œ0; 1� is an arbitrary real number (Fig. 3.2).
A directional derivative of � at x in the direction .y�x/ is defined by

lim
�!0

1

�
Œ�.x C �.y � x//� �.x/� 	 @�

@x
� .y � x/ (3.83)

where y is an arbitrary vector. This is also referred to as the Gâteaux differential.

Fig. 3.2 Convex functional

5If the domain of a function is (a subset of) one dimensional real number space R, it is said to be a
‘functional’. The potential functions, such as the internal energy, are a typical functional.
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The inequality (3.82) is changed into

�.x2/� �.x1/ � 1

�
Œ�..1 � �/x1 C �x2/� �.x1/� :

Then we take the limit � ! 0, and substitute the definition (3.83) to obtain

�.x2/ � �.x1/ � @�

@x1
� .x2 � x1/: (3.84)

Commuting x1 and x2 in (3.84), we have

�.x1/ � �.x2/ � @�

@x2
� .x1 � x2/: (3.85)

Summing (3.84) and (3.85) yields

�
@�

@x2
� @�

@x1

�

� .x2 � x1/ � 0: (3.86)

This property of the gradient @�=@x is known as monotonicity.
If a function � is sufficiently smooth, the convexity of � is equivalent to the

monotonicity of @�=@x, as observed above.
If a function �.x/ is convex, the conjugate function  .y/ D y � x��.x/ is also

convex. The proof is left up to the reader.

3.4.2 Thermodynamic Functions in a Thermo-mechanical
Field: Solids with Small Strain

As described in Sect. 3.2, the change of internal energy du."e; s/ under the
assumption of a small strain theory is given by

du."e; s/ D � 
 W d"e C T ds; (3.87)

� 
 D @u

@"e
; T D @u

@s
(3.88)

where � 
 is the normalized measure of Cauchy stress defined by (3.22) and s is the
entropy density exchangeable to the surroundings as mentioned in Sect. 3.2.5.

Note 3.5 (Paffian and existence of potential function). The differential form

F � dx D
nX

˛D1
F˛ dx˛ (3.89)
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which is given, e.g., as the terms of the r.h.s. of (3.87), is often referred to as the
Paffian. The condition that the Paffian is written as an exact differential, that is,
there exists a scalar function ' such that

d' D @'

@x˛
dx˛;

is referred to as the integrability condition. The integrability is sometimes referred to
as the Born-Carathèodory theorem (see Kestin 1979). The necessary and sufficient
condition of the integrability of the Paffian is given by

r ^ F D 0 ) @F�

@x�
D @F�

@x�
.�; � D 1; 2; � � � ; n/: (3.90)

For proof, Stokes’ theorem is used. Note that in Sect. 9.10 and Chap. 10 of Kestin
(1979) we find detailed descriptions concerning the Born-Carathèodory theorem
based on conventional thermodynamics.

If the integrability (3.90) is applied for the case of internal energy u."e; s/,
we have

@� 


@s
D @T

@"e
) @2u

@s @"e
D @2u

@"e @s
; (3.91)

since from (3.88) � 
 D @u=@"e; T D @u=@s. Thus we understand that if u."e; s/ is
sufficiently smooth (i.e., twice differentiable), (3.91)1 is clearly satisfied.

Mathematically the Paffian is a 1-form in exterior algebra. The theory of exterior
algebra and differential geometry are fundamental tools of modern physics (see,
e.g., Hassani 1999; Frankel 2004). �

Note 3.6 (Notation of pressure and volume change for fluid and thermodynamic
functions). Most textbooks on thermodynamics (de Groot and Mazur 1962; Kestin
1979; Kondepudi and Prigogine 1998) contain treatments of the perfect gas,
therefore we have � D �pi (p is pressure and compression is positive). Let
p
 D p=�, then (3.87) can be written as

du.ve; s/ D �p
 dve C T ds; p
 D � @u

@ve
; T D @u

@s
(3.92)

where dve D d"eii is the change of elastic volumetric strain.
The increment of internal energy du� for, e.g., a Newtonian fluid, given by

(2.226) is constructed by

du� D � 
 W D dt D ��p
 trD C � .trD/2 C 2�D W D	 dt (3.93)

It is not possible to directly have a constitutive law from this relation such as � 
 D
@u�=@.�/, i.e., no exact differential form exists. If the second and third terms of the
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r.h.s. of (3.93) are ignored, i.e., fluid is assumed to be inviscid, (3.93) is reduced to
(3.92) and we can consider the potential form. That is, the second and third terms
correspond to the internal mechanism of dissipation for the exchange of energies
(i.e., kinetic or stress energies) into heat energy. Details are given in Sect. 3.4.4. �

If the extensive variables are increased k-times, the internal energy u also increases
k-times. That is, the internal energy u."e; s/ is a homogeneous function of order one
(cf. Note 3.8, p. 108) of the extensive variables:

u.k"e; ks/ D k u."e; s/ (3.94)

Let us introduce Taylor’s series expansion after setting k D 1C� .� 
 1/ in this
equation to obtain

u ..1C �/"e; .1C �/s/ D u C �

�
@u

@"e
W "e C @u

@s
s

�

D u C �
�
� 
 W "e C T s

�

(3.95)

where (3.87) is used. However, since u."e; s/ is a homogeneous function of order
one, we have

u ..1C �/"e; .1C �/s/ D .1C �/u D u C �u: (3.96)

Comparing the terms of the r.h.s. of (3.95) and (3.96) yields

u."e; s/ D � 
 W "e C T s: (3.97)

This is referred to as Euler’s equation. Differentiating this and substituting (3.87)1
we obtain the Gibbs-Duhem relation as

"e W d� 
 C s dT D 0: (3.98)

This relation indicates that the conjugate variables ."e; s/ and .� 
; T / are not
independent of each other.

Note 3.7 (Euler’s equation and the Gibbs-Duhem relation). If the r.h.s. of (3.97) is
differentiated in a straightforward way, we have

d� 
 W "e C "e W d� 
 C s dT C T ds:

Thus the Gibbs-Duhem relation gives the condition that the variables of internal
energy u are ."e; s/, and the differential is given by (3.87):

du."e; s/ D � 
 W d"e C T ds: (3.99)

Recall that the existence of the energy potential u is proved by the integrability
condition (cf. Note 3.5). �
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The Helmholtz free energy f ."e; T / is defined by

f ."e; T / D u."e; s/ � T s (3.100)

with its variables ."e; T /. Here, because of the convention in thermodynamics, the
negative sign of the Legendre transformation is used. Alternatively, the Helmholtz
free energy is interpreted as the energy obtained by subtracting the effect of
temperature from the internal energy u. Thus from the definition of the Helmholtz
free energy (3.100) we have

df D du � d.T s/ D � 
 W d"e � s dT; � 
 D @f

@"e
; s D � @f

@T
: (3.101)

The enthalpy h.� 
; s/ is defined by

h.� 
; s/ D u."e; s/ � � 
 W "e (3.102)

with its variables .� 
; s/. The enthalpy is interpreted as the energy obtained by
subtracting the effect of mechanical work from the internal energy u. Thus from
the definition of the enthalpy (3.102) we have

dh D du � d.� 
 W "e/ D T ds � "e W d� 
; "e D � @h

@� 

; T D @h

@s
: (3.103)

The Gibbs free energy or Gibbs energy g.� 
; T / is defined by

g.� 
; T / D h.� 
; s/�T s D f ."e; T /�� 
 W "e D u."e; s/�� 
 W "e�T s (3.104)

with its variables .� 
; T /. The Gibbs free energy is interpreted as the energy
obtained by subtracting the thermal and mechanical effects from the internal
energy u. Thus from the definition of the Gibbs free energy (3.104) we have

dg D du � d.� 
 W "e/ � d.T s/ D �"e W d� 
 � s dT; "e D � @g

@� 

; s D � @g

@T
:

(3.105)

Example 3.1 (Elastic material under small strain condition). Under small strain
theory the variables of internal energy u in the course of ‘mechanical and thermal
fields’ are the strain "e and the entropy s which are extensive variables; thus the
increment of internal energy density du."e; s/ can be written as

du."e; s/ D � 
 W d"e C T ds; (3.106)

� 
 D @u

@"e
; T D @u

@s
(3.107)

where ds is the change of entropy exchangeable with its surroundings.
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As understood from (3.107), the internal energy density u of an elastic material
is a function of the strain "e if no temperature change is involved. In this case u."e/
is the strain energy, and we have

u."e/ D
Z "e

0

� 
."e/ W d"e , du D � 
 W d"e: (3.108)

Let us introduce the Legendre transformation for u."e/ such that

w.� 
/ D � 
 W "e � u."e/

then we obtain the following complementary energy density:

w.� 
/ D
Z � 


0

"e.� 
/ W d� 
 , dw D "e W d� 
: (3.109)

These functions are schematically shown in Fig. 3.3. It is easy to see that (3.108)
and (3.109) are equivalent to

� 
 D @u

@"e
; "e D @w

@� 

: (3.110)

The material is said to be elastic if

�


ij D Aijkl "kl ; Aijkl D @2u

@"eij @"
e
kl

(3.111)

"eij D Bijkl �



kl ; Bijkl D @2w

@�


ij @�




kl

(3.112)

where the elastic tensorA is the inverse of the compliance tensorB (Bijkl D A�1
ijkl ;

Aijkl D B�1
ijkl ). Then we have

u D 1

2
Aijkl "

e
ij "

e
kl ; w D 1

2
Bijkl �



ij �




kl :

Fig. 3.3 Strain energy and
complimentary energy
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Since the differentiation of (3.111) and (3.112) is commutative, the elastic tensorA
and compliance tensor B show symmetry:

Aijkl D Aklij ; Bijkl D Bklij :

For an isotropic linear elastic material we have

Aijkl D �ıij ıkl C �.ıikıjl C ıil ıjk/ (3.113)

where �; � are Lamè’s constants (see Note 2.7, p. 51; this form is obtained by
setting � D � in De

ijkl ). The strain energy density u and the complimentary energy
density w are

u D 1

2



�"ei i "

e
jj C 2�"eij "

e
ij

�
; w D 1

2

�
1C �

E
�


ij �



ij � �

E
�


i i�



jj

�

(3.114)

where E and � are Young’s modulus and Poisson’s ratio, respectively, and are
related to the Lamè constants � (=G, the shear modulus) and � as follows:

� D G D E

2.1C �/
; � D �E

.1C �/.1� 2�/
: � (3.115)

Example 3.2 (Heat conduction problem, Fourier’s law and heat capacity). The dis-
sipative energy equation (3.50) defines the governing equation of heat conduction.
If force effects are not accounted for, we can ignore the first term of the r.h.s. of
(3.50) to obtain

Cv
dT

dt
D divk gradT C � r: (3.116)

Here, we employ Fourier’s law which relates the temperature gradient to the heat
flux. It should be noted that the temperature plays a role of potential, and Cv is the
heat capacity under constant volume, calculated as follows:

Cv D �
@s

@T

@u

@s

ˇ
ˇ
ˇ
ˇ
ve

(3.117)

(because u is the function of s).6 The result (3.116) is the classical heat conduction
equation, which is a partial differential equation of the parabolic-type.

Another heat capacity, i.e., the heat capacity under constant pressure Cp, can be
defined, which is calculated by using enthalpy h, as

Cp D �
@h

@T

ˇ
ˇ
ˇ
ˇ
p

: (3.118)

6In thermodynamics
@A

@x

ˇ
ˇ
ˇ
ˇ
a;b

implies differentiation of A with respect to x under a; b constant.
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If the relationship giving the rate of internal energy � du D �p dveC� T ds (cf.
(3.92)) is applied, we obtain the relationship of both capacities. Suppose the heat
supply is dQ, then we have

� du D dQ � p dve D @s

@T

@u

@s

ˇ
ˇ
ˇ
ˇ
ve
dT C �

@u

@ve

ˇ
ˇ
ˇ
ˇ
T

dve: (3.119)

This implies that

dQ D @s

@T

@u

@s

ˇ
ˇ
ˇ
ˇ
ve
dT C

�

p C �
@u

@ve

ˇ
ˇ
ˇ
ˇ
T

�

dve (3.120)

Since the change of internal energy is equal to the heat supply under constant
volume, we have

Cv D dQ
dT

ˇ
ˇ
ˇ
ˇ
ve

D @s

@T

@u

@s

ˇ
ˇ
ˇ
ˇ
ve
: (3.121)

On the other hand, under constant pressure (3.120) is given as

Cp D dQ
dT

ˇ
ˇ
ˇ
ˇ
p

D @s

@T

@u

@s

ˇ
ˇ
ˇ
ˇ
ve

C
�

p C �
@u

@ve

ˇ
ˇ
ˇ
ˇ
T

�
@ve

@T

ˇ
ˇ
ˇ
ˇ
p

: (3.122)

Thus the relationship between both capacities is of the form

Cp � Cv D
�

p C �
@u

@ve

ˇ
ˇ
ˇ
ˇ
T

�

�
@s

@T

@u

@s

ˇ
ˇ
ˇ
ˇ
p

: (3.123)

This result suggests that Cp is always greater than Cv, and a part of the adsorbed
heat under constant pressure results in volume expansion. �

3.4.3 Thermodynamic Functions in a Thermo-mechanical
Field: A Finitely Strained Solid |

Problems in solid mechanics mostly employ a Lagrangian description. Here we
rewrite the thermodynamic functions treated in the previous Subsection in a
Lagrangian description.

As understood by (3.77), the change of internal energy du.E e; s/ is

du.E e; s/ D T 
 W dE e C T ds; T 
 D @u

@E e
; T D @u

@s
(3.124)

where T 
 D T =�0 is the second Piola-Kirchhoff stress per unit mass defined by
(3.34), and T is a temperature corresponding to the Lagrange entropy s.
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Euler’s equation and the Gibbs-Duhem relation are given as follows:

u.E e; s/ D T 
 W E e C T s; (3.125)

E e W dT 
 C s dT D 0: (3.126)

The Helmholtz free energy f .E e;T/ is defined by

f .E e;T/ D u.E e; s/� T s (3.127)

with its variables .E e;T/ where E e is the Green’s strain. Thus from the definition
of the above Helmholtz free energy we have

df D du � d.Ts/ D T 
 W dE e � s dT; T 
 D @f

@E e
; s D �@f

@T
: (3.128)

The enthalpy h.T 
; s/ is defined by

h.T 
; s/ D u.E e; s/� T 
 W E e (3.129)

with its variables .T 
; s/. Thus from the above equation we have

dh D du � d.T 
 W E e/ D �E e W dT 
 C T ds; E e D � @h

@T 

; T D @h

@s
(3.130)

The Gibbs free energy g.T 
;T/ is defined by

g.T 
;T/ D h.T 
; s/� T s D f .E e;T/ � T 
 W E e D u.E e; s/� T 
 W E e � T s
(3.131)

with its variables .T 
;T/. Thus the above definition of Gibbs free energy gives

dg D du � d.T 
 W E e/� d.T s/ D �E e W dT 
 � s dT;

E e D � @g

@T 

; s D �@g

@T
: (3.132)

As described in Sect. 3.2.2 the procedure becomes complicated for the case of a
generalized Eulerian strain measure e.n/. Only an isotropic material body can form
the rate of internal energy du�.ee; s/ together with the rate Pee of the generalized
Eulerian strain measure ee D REeRT and its energy-conjugate corotational Euler
stress tE
 D RT 
RT (see (3.37)). That is, for the isotropic body we have

du.ee; s/ D tE
 W dee C T ds; tE
 D @u

@ee
; T D @u

@s
: (3.133)
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Euler’s equation and the Gibbs-Duhem relation are given as follows:

u.ee; s/ D tE
 W ee C T s; (3.134)

ee W d tE
 C s dT D 0: (3.135)

The Helmholtz free energyf .ee; T /, enthalpyh.tE
; s/, Gibbs free energy
g.tE
; T / and their changes are given as follows:

f .ee; T / D u.ee; s/ � T s; (3.136)

df D du � d.T s/ D T 
 W dee � s dT;

T 
 D @f

@ee
; s D � @f

@T
; (3.137)

h.tE
; s/ D u.ee; s/� tE
 W ee; (3.138)

dh D du � d.tE
 W ee/ D T ds � ee W d tE
;

ee D � @h

@tE

; T D @h

@s
; (3.139)

g.tE
; T / D h.tE
; s/ � T s D f .ee; T /� tE
 W ee D u.ee; s/ � tE
 W ee � T s;
(3.140)

dg D du � d.tE
 W ee/� d.T s/ D �ee W d tE
 � s dT;

ee D � @g

@tE

; s D � @g

@T
: (3.141)

Example 3.3 (Finite strain hyperelastic theory). The hyperelastic theory with
assumptions of small strain, as shown in Example 3.1 (p. 102), can be applied
to the hyperelastic material undergoing finite strain in a similar manner. In addition,
the temperature field is also included.

Let u.Ee; s/ be the internal energy. The enthalpy h.T 
; s/ is given by (3.129),
which is the negative-valued complementary strain energy. Using (3.124) and
(3.130) we have

T 
 D @u

@E e
; E e D � @h

@T 

; T D @u

@s
D @h

@s
: (3.142)

The body is said to be hyperelastic if
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T



IJ D AIJKLE
e
KL; (3.143)

AIJKL D @2u

@Ee
IJ @E

e
KL

D @T



IJ

@Ee
KL

D @T



KL

@Ee
IJ

D AKLIJ (3.144)

Ee
IJ D BIJKLT



KL; (3.145)

BIJKL D � @2h

@T



IJ @T



KL

D @Ee
IJ

@T



KL

D @Ee
KL

@T



IJ

: D BKLIJ (3.146)

Substituting (3.144) into (3.143), we have

T


IJ D @T



IJ

@Ee
KL

Ee
KL:

If we recall Euler’s theorem (Note 3.8), this shows that T 
 is the homogeneous
function of order 1. �

Note 3.8 (Homogeneous function and Euler’s theorem). A function �.x/ is said to
be the homogeneous function of degree n if, for any scalar k, we have

�.kx/ D kn�.x/: (3.147)

If �.x/ is the homogeneous function of order n, we have the following Euler’s
theorem:

x � @�
@x

D n�.x/: (3.148)

Proof. Differentiate (3.147) with respect to k to obtain

@�

@k
D @�

@.kx/
� @.kx/
@k

D @�

@.kx/
� x D nkn�1�.x/;

and set k D 1, which gives (3.148). �

3.4.4 Thermodynamic Functions in a Thermo-
mechanical Field: A Fluid

Let us consider a Newtonian fluid defined by (2.226):

� 
 D .�p
 C � trD/ i C 2�D (3.149)

where p
 is the normalized measure of pressure defined by (2.226), and �
 D �=�,
�
 D �=� are the kinematic viscosities. Taking the inner product for (3.149) with
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respect to the stretch tensorD, we obtain

� 
 W D D �p
trD C �
 .trD/2 C 2�
D 0 W D0 (3.150)

where D0 is the deviatoric part of D and �
 D �
C2�
=3. Recall that from (2.98)
we have

div v D trD D � P�
�

D � d
dt

�

ln
�

�0

�

(3.151)

where �0 is the mass density of the undeformed reference state, which, in chemistry,
is commonly selected as the standard state (P� D 0.1 MPa D 1 bar, T � D 25
ıC D 298.15 K). Substituting (3.151) into (3.150) gives

� 
 W D D p

d

dt

�

ln
�

�0

�

C �
 .trD/2 C 2�
D0 W D0

Only the first term of the r.h.s. of this equation has an exact differential form. Thus
we can introduce the following:

� 
 W D D � 
 W De C � 
 W Di D p

d�e

dt
Cˆ.D/; (3.152)

�e D ln
�

�0
; ˆ.D/ D �
 .trD/2 C 2�
D0 W D0 (3.153)

Here �e gives an elastic strain and ˆ.D/, referred to as the dissipation function,
represents an internal dissipation due to viscosity. It should be noted that in a fluid
only the volumetric change (i.e., the density change) forms the elastic deformation.
The dissipation function implies that the rate of change of the mechanical energy of
fluid into heat is molecular kinetic energy, and it corresponds to the part � 
 W Di of
the dissipative energy equation (3.50) or (3.294).

Based on the above discussions the change of internal energy for a compressible
fluid is introduced by

du.�e; s/ D p
 d�e C T ds; p
 D @u

@�e
; T D @u

@s
: (3.154)

Euler’s equation and the Gibbs-Duhem relation are given as

u.�e; s/ D p
 �e C T s; (3.155)

�e dp
 C s dT D 0: (3.156)

The Helmholtz free energy f .�e; T /, enthalpy h.p
; s/, Gibbs free energy
g.p
; T / and their changes are given as follows:
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f .�e; T / D u.�e; s/ � T s; (3.157)

df D du � d.T s/ D p
 d�e � s dT; p
 D @f

@�e
; s D � @f

@T
; (3.158)

h.p
; s/ D u.�e; s/ � p
 �e; (3.159)

dh D du � d.p
 �e/ D T ds � �e dp
; �e D � @h

@p

; T D @h

@s
;

(3.160)

g.p
; T / D h.p
; s/ � T s D f .�e; T /� p
 �e D u.�e; s/� p
 �e � T s;

(3.161)

dgDdu � d.p
 �e/� d.T s/D � �e dp
 � s dT; �e D � @g

@p

; s D � @g

@T
:

(3.162)

Note 3.9 (On compressibility of a fluid and an incompressible fluid). Let V be
an infinitesimal volume element of a fluid at the current state and V0 be the
corresponding volume at the reference state. From mass conservation we have

� V D �0 V0 (3.163)

Using this and (3.151), trD is written as

trD D � d
dt

�

ln
�

�0

�

D d

dt

�

ln
V

V0

�

(3.164)

As described in Appendix E.1, in classical thermodynamics the change of internal
energy due to pressure is treated as �P d.V=V0/ (following the above notation for
the volume change).

Let V D V0 C�V; "v D �V=V0, and estimate ln.V=V0/ by Taylor series:

ln
V

V0
D "v � 1

2
."v/

2 C � � � : (3.165)

This suggests that if we estimate the change of internal energy as du D �p
d"v C
T ds under the volumetric strain "v, it is acceptable as a first-order approximation.
However, if we treat a compressible gas under high pressure, we need to include
second-order effects of (3.165).

The assumption of incompressibility is commonly employed for many cases
in fluid mechanics. However, as understood from the above discussions, it is
impossible to introduce the thermodynamic functions. In fact, the pressure of an
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incompressible fluid cannot be determined locally, and it is specified by the velocity
field globally. In this sense the incompressibility condition should be used under
careful consideration. �

3.5 Chemical Process and Thermodynamics

Suppose that we add n mole of the same species to a thermodynamic system. Since
all the molecules added must be in the same motion as the others, the following
amount of internal energy is added to the system:

dUc D �dn: (3.166)

Here, dUc represents the change of internal energy due to the addition of mass
during the chemical process, and � is the chemical potential that provides a
resistance when one mole of substance is added to the system. Note that the
chemical potential � is an intensive variable and the amount of substance n is the
extensive variable. Here a molar mass description is used. In most of the textbooks
in chemistry and chemical physics, molar mass descriptions are employed; however,
in continuum mechanics we need to use a concentration-based notation. Note that
the chemical potential � corresponds to the Gibbs energy for concentration c D 1

(shown later).
We discuss here the fundamental variables and thermodynamic functions due to

a chemical process in terms of continuum mechanics.

3.5.1 Thermodynamic Variables in a Thermo-
mechanochemical Field

We apply the concept of the representative elementary volume (REV) within a
volume �V for averaging variables, which will be discussed in Sect. 5.1. Suppose
that for a mixture solution with N -components of species, an amount of substance
of species ˛ is given as n˛ mole. Then the volume molar fraction!˛ and the mass
density �˛ are defined as follows:

n˛ D !˛ �V D �˛

m˛

�V .Š˛/ (3.167)

where m˛ is the molecular weight of the ˛th component. Suppose that the total
amount of substance in this mixture is n�, and the sum of the volume molar fraction
!˛ is !, then we have

n� D
NX

˛D1
n˛; ! D

NX

˛D1
!˛ D n�

�V
: (3.168)
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Table 3.1 Field variables for a mixture

n˛ .˛ D 1; 2; : : : ; N / Amount of substance of species ˛ [mol]
n� D PN

˛D1 n˛ Total amount of substance in the system [mol]
m˛ Molecular weight of species ˛ [dalton]
m D PN

˛D1 x˛m˛ Average molecular weight[dalton]
!˛ D �˛=m˛ D n˛=�V Volumetric molar concentration of species ˛ [molar D mol/L3]
! D PN

˛D1 !˛ D n�=�V Volumetric molar concentration of system [molar D mol/L3]
!


˛ D !˛=� D x˛!


 Mass molar concentration of species ˛ [molal D mol/M]

!
 D PN
˛D1 !



˛ D 1=m Mass molar concentration of system [molal D mol/M]

x˛ D !˛=! D n˛=n
� Molar fraction of species ˛

�˛ D !˛m˛ D n˛m˛=�V Mass density of species ˛ [M/L3]
� D PN

˛D1 �˛ Averaged mass density of system [M/L3]
c˛ D �˛=� Mass concentration of species ˛
�˛ Chemical potential per unit mass of species ˛ [J/M]

Units: L is the space length, T is the time, M is the mass, and J is the energy (e.g., joule)
The summation convention is not used for ˛ .Š˛/

Let the total mass � be given by

� D
NX

˛D1
�˛; (3.169)

and the mass concentration (henceforth simply referred to as the concentration) is
defined by

c˛ D �˛

�
: (3.170)

Since we have the relationship
NX

˛D1
c˛ D 1; (3.171)

the concentration c˛ is not totally independent, in that one of them is dependent on
the other.

The molar fraction is defined by

x˛.x/ D !˛

!
D n˛

n� ; (3.172)

and the averaged molecular weightm is given by

m D
NX

˛D1
m˛x˛: (3.173)

The variables are shown in Table 3.1.
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Note 3.10 (Molar description, concentration, units and dimension). Let us consider
the relationship between the internal energy per unit mass u˛, the chemical potential
per unit mass �˛ and the mass concentration c˛ . The dimension of du˛=dt is
[J/(M T)], and this dimension is the same as that for �˛ dc˛=dt .Š˛/. Since the
dimension of �˛ is [J/M], c˛ is dimensionless. Therefore the concentration which
is conjugate to the chemical potential �˛ is simply the mass concentration c˛ ,
and the change of internal energy due to a chemical process can be written as
d.uc/˛ D �˛ dc˛ .Š˛/. �

3.5.2 Thermodynamic Functions in a Thermo-
mechanochemical Field: A Small Strain Solid

Let the change of internal energy due to mass flow be duc D P
˛ �˛dc˛ (cf.

Note 3.10), then the change of total internal energy per unit mass is given by7

du."e; s; c˛/ D � 
 W d"e C T ds C
X

˛

�˛ dc˛; (3.174)

� 
 D @u

@"e

ˇ
ˇ
ˇ
ˇ
s; c˛

; T D @u

@s

ˇ
ˇ
ˇ
ˇ
"e; c˛

; �˛ D @u

@c˛

ˇ
ˇ
ˇ
ˇ
"e; s

: (3.175)

As mentioned in Sect. 3.4.2 the internal energy u."e; s; c˛/ is a homogeneous
function of order one of the extensive variables, and Euler’s equation and the Gibbs-
Duhem relation are given as follows:

u D � 
 W "e C T s C
X

˛

�˛ c˛; (3.176)

"e W d� 
 C s dT C
X

˛

c˛ d�˛ D 0: (3.177)

The Helmholtz free energy per unit mass f ."e; T; c˛/ is calculated using (3.100)
and (3.176) as

f ."e; T; c˛/ D u."e; s; c˛/� T s D � 
 W "e C
X

˛

�˛ c˛; (3.178)

and the increment is

7The differential appeared in (3.174)
@u

@c˛

ˇ
ˇ
ˇ
ˇ
"e ; s

and is sometimes referred to as the partial mass value (this case, partial mass internal energy) (cf.
Slattery 1999, p. 447).
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df D � 
 W d"e � s dT C
X

˛

�˛ dc˛; (3.179)

� 
 D @f

@"e

ˇ
ˇ
ˇ
ˇ
T; c˛

; s D � @f
@T

ˇ
ˇ
ˇ
ˇ
c˛; "e

; �˛ D @f

@c˛

ˇ
ˇ
ˇ
ˇ
"e ; T

: (3.180)

The enthalpy per unit mass h.� 
; s; c˛/ is calculated from (3.102) and (3.176) as

h.� 
; s; c˛/ D u."e; s; c˛/� � 
 W "e D T s C
X

˛

�˛ c˛; (3.181)

and the increment is

dh D �"e W d� 
 C T ds C
X

˛

�˛ dc˛; (3.182)

"e D � @h

@� 


ˇ
ˇ
ˇ
ˇ
s; c˛

; T D @h

@s

ˇ
ˇ
ˇ
ˇ
c˛; � 


; �˛ D @h

@c˛

ˇ
ˇ
ˇ
ˇ
� 
; s

: (3.183)

The Gibbs free energy per unit mass g.� 
; T; c˛/, calculated using (3.104) and
(3.176), is

g.� 
; T; c˛/ D h.� 
; s; c˛/� T s D u."e; s; c˛/ � T s � � 
 W "e D
X

˛

�˛ c˛;

(3.184)
and the increment is

dg D �"e W d� 
 � s dT C
X

˛

�˛ dc˛; (3.185)

"e D � @g

@� 


ˇ
ˇ
ˇ
ˇ
T; c˛

; s D � @g
@T

ˇ
ˇ
ˇ
ˇ
c˛; � 


; �˛ D @g

@c˛

ˇ
ˇ
ˇ
ˇ
� 
; T

: (3.186)

The grand potential per unit mass �."e; T; �˛/ is given by

�."e; T; �˛/ D u."e; s; c˛/� T s �
X

˛

�˛ c˛ D � 
 W "e; (3.187)

and the increment is

d� D � 
 W d"e � s dT �
X

˛

c˛ d�˛; (3.188)

� 
 D @�

@"e

ˇ
ˇ
ˇ
ˇ
T;�˛

; s D � @�
@T

ˇ
ˇ
ˇ
ˇ
�˛; "e

; c˛ D � @�

@�˛

ˇ
ˇ
ˇ
ˇ
"e ; T

: (3.189)

The transformation, changing all the variables of internal energy u."e; s; c˛/ into
.� 
; T; �˛/, is
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 D u � T s � � 
 W "e �
X

˛

�˛ c˛;

which is meaningless, since  	 0 by applying Euler’s equation (3.176), and this
conclusion is also suggested by the Gibbs-Duhem relation (3.177).

Note 3.11 (Interpretation of thermodynamic functions). Based on (3.176), (3.178),
(3.181), (3.184) and (3.187) we understand the following implication of thermody-
namic functions:

Internal energy u."e; s; c˛/ D � 
 W "e C T s CP
˛ �˛ c˛ W

Sum of mechanical, heat and chemical energies
Helmholtz free energy f ."e; T; c˛/ D � 
 W "e CP

˛ �˛ c˛ W
Sum of mechanical and chemical energies

Enthalpy h.� 
; s; c˛/ D T s CP
˛ �˛ c˛ W

Sum of heat and chemical energies
Gibbs free energy g.� 
; T; c˛/ D P

˛ �˛ c˛ W
Chemical energy

Grand potential �."e; T; �˛/ D � 
 W "e W
Mechanical energy

The result (3.184) shows that the sum of chemical potentials � D P
�˛ for each

species is regarded as the Gibbs free energy when the concentration c˛ D 1 per unit
volume and per unit mole. �

As shown by (3.174) the change of internal energy is given by

du D � 
 W d"e C T ds C
X

˛

�˛ dc˛

D @u

@"e

ˇ
ˇ
ˇ
ˇ
s; c˛

W d"e C @u

@s

ˇ
ˇ
ˇ
ˇ
c˛; "e

ds C
X

˛

@u

@c˛

ˇ
ˇ
ˇ
ˇ
"e ; s

dc˛:

Since the differentiations commute

@

@s

 
@u

@"e

ˇ
ˇ
ˇ
ˇ
s; c˛

!

c˛; "e

D @

@"e

 
@u

@s

ˇ
ˇ
ˇ
ˇ
c˛; "e

!

s; c˛

;

we have the relationships to determine .� 
; T; �˛/:

@� 


@s

ˇ
ˇ
ˇ
ˇ
c˛; "e

D @T

@"e

ˇ
ˇ
ˇ
ˇ
s; c˛

;
@T

@c˛

ˇ
ˇ
ˇ
ˇ
"e ; s

D @�˛

@s

ˇ
ˇ
ˇ
ˇ
c˛; "e

;
@�˛

@"e

ˇ
ˇ
ˇ
ˇ
s; c˛

D @� 


@c˛

ˇ
ˇ
ˇ
ˇ
"e; s

: (3.190)
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Using a procedure similar to that outlined above for the internal energy u."e; s; c˛/,
we obtain the following relationships from (3.179) for the Helmholtz free energy
f ."e; T; c˛/:

@� 


@T

ˇ
ˇ
ˇ
ˇ
c˛; "e

D � @s

@"e

ˇ
ˇ
ˇ
ˇ
T; c˛

; � @s

@c˛

ˇ
ˇ
ˇ
ˇ
"e ; T

D @�˛

@T

ˇ
ˇ
ˇ
ˇ
c˛; "e

;
@�˛

@"e

ˇ
ˇ
ˇ
ˇ
T; c˛

D @� 


@c˛

ˇ
ˇ
ˇ
ˇ
"e ; T

:

(3.191)

From (3.182) for the enthalpy h.� 
; s; c˛/ we have

� @"e

@s

ˇ
ˇ
ˇ
ˇ
c˛; � 


D @T

@� 


ˇ
ˇ
ˇ
ˇ
s; c˛

;
@T

@c˛

ˇ
ˇ
ˇ
ˇ
� 
; s

D @�˛

@s

ˇ
ˇ
ˇ
ˇ
c˛; � 


;
@�˛

@� 


ˇ
ˇ
ˇ
ˇ
s; c˛

D �@"
e

@c˛

ˇ
ˇ
ˇ
ˇ
� 
; s

:

(3.192)

Using (3.185) for the Gibbs free energy g.� 
; T; c˛/ gives

�@"
e

@T

ˇ
ˇ
ˇ
ˇ
c˛; � 


D � @s

@� 


ˇ
ˇ
ˇ
ˇ
T; c˛

; � @s

@c˛

ˇ
ˇ
ˇ
ˇ
� 
; T

D @�˛

@T

ˇ
ˇ
ˇ
ˇ
c˛; � 


;
@�˛

@� 


ˇ
ˇ
ˇ
ˇ
T; c˛

D �@"
e

@c˛

ˇ
ˇ
ˇ
ˇ
� 
; T

:

(3.193)

Equation 3.188 for the grand potential �."e; T; �˛/ is used to give

@� 


@T

ˇ
ˇ
ˇ
ˇ
�˛; "e

D � @s

@"e

ˇ
ˇ
ˇ
ˇ
T;�˛

; � @s

@�˛

ˇ
ˇ
ˇ
ˇ
"e; T

D �@c˛
@T

ˇ
ˇ
ˇ
ˇ
�˛; "e

; �@c˛
@"e

ˇ
ˇ
ˇ
ˇ
T;�˛

D @� 


@�˛

ˇ
ˇ
ˇ
ˇ
"e; T

:

(3.194)

The relations (3.190)–(3.194) are referred to as Maxwell’s relations.
The closed system (cf. Appendix D) without chemical processes implies that

dc˛ D 0, and using (3.174) we have

ds D 1

T
du � 1

T
� 
 W d"e D 1

T

�
@u

@"e

ˇ
ˇ
ˇ
ˇ
T

� � 

�

W d"e C 1

T

@u

@T

ˇ
ˇ
ˇ
ˇ
"e
dT

where the entropy is assumed to be a function of the temperature T , and u is treated
as a function of T . Alternatively, the total differential of entropy is

ds D @s

@"e

ˇ
ˇ
ˇ
ˇ
T

W d"e C @s

@T

ˇ
ˇ
ˇ
ˇ
"e
dT;

and, by comparing both equations, we have

@s

@"e

ˇ
ˇ
ˇ
ˇ
T

D 1

T

�
@u

@"e

ˇ
ˇ
ˇ
ˇ
T

� � 

�

;
@s

@T

ˇ
ˇ
ˇ
ˇ
"e

D 1

T

@u

@T

ˇ
ˇ
ˇ
ˇ
"e
: (3.195)
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Again, the differentiations commute:

@2s

@T @"e

ˇ
ˇ
ˇ
ˇ
c˛

D @2s

@"e @T

ˇ
ˇ
ˇ
ˇ
c˛

:

Differentiating (3.195) yields

�
@

@T

�
1

T

�
@u

@"e

ˇ
ˇ
ˇ
ˇ
T

� � 

�
�

"e

D
�
@

@"e

�
1

T

@u

@T

�

"e

�

T

D
�
@

@"e


 s

T

�

"e

�

T

D 0:

Thus for the closed system we have the following Helmholtz relation:

@u

@"e

ˇ
ˇ
ˇ
ˇ
T

D �T 2 @.�

=T /

@T

ˇ
ˇ
ˇ
ˇ
"e
: (3.196)

From (3.184) and (3.185), the Gibbs free energy g.� 
; T; c˛/ is expressed as

g.� 
; T; c˛/ D h."e; s; c˛/C @g

@T

ˇ
ˇ
ˇ
ˇ
c˛;� 


T:

This results in the following Gibbs-Helmholtz relation8:

@

@T


 g

T

�
D � h

T 2
: (3.197)

Note 3.12 (Gibbs’ phase rule). As described in Note 3.11, the chemical potential
�˛ is taken as the Gibbs free energy g.� 
; T; c˛/ of a species ˛ when the
concentration c˛ D 1. Thus the unknown parameters required to determine the
chemical potential are temperature T , stress � 
 and concentration c˛ . The number
of unknown variables are as follows: one for temperature T , six for stress � 
 and
N�1 for concentration c˛ N�1 (cf. (3.171), p. 112). It should be noted that in most
of the chemical textbooks the ‘stress’ represented is only the pressure, therefore the
number of unknowns is one. Let us assume that each chemical species forms p-
phases, and the chemical potential at phase a is �.a/˛ . Then the number of unknowns
are p.N�1/. If all the phases are in equilibrium, the chemical potentials of all phases
are equivalent:

8In some textbooks (3.197) is rewritten by using the changes of enthalpy �h and the Gibbs free
energy �g before and after the reaction, and the Gibbs-Helmholtz relation is given by

@

@T

�
�g

T

�

D ��h
T 2

Time-differentiation of (3.197) suggests that the above form is not accurate.
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8
ˆ̂
<

ˆ̂
:

�

.1/
1 D �


.2/
1 D � � � D �


.p/
1

:::

�

.1/
N D �


.2/
N D � � � D �


.p/
N :

The number of unknowns for this phase equilibrium is N.p�1/. Hence the number
of degrees of freedom of this system is (under six components of stress)

f D 1C 6C p.N � 1/�N.p � 1/ D 7CN � p: (3.198)

If only the pressure is considered, we have

f D 1C 1C p.N � 1/�N.p � 1/ D 2CN � p: (3.199)

The condition for the degrees of freedom given by (3.198) or (3.199) is referred to
as the Gibbs’ phase rule.

The systems with degrees of freedom of zero, one, two and three are referred to
as the non-variant, monovariant, divariant and trivariant systems, respectively. For
example, if we have a system with one species and treat only the pressure, f D 3�p,
therefore the condition for coexistence of gas, liquid and solid phases is f D 0,
which is referred to as the triple point. �

3.5.3 Thermodynamic Functions in a Thermo-
mechanochemical Field: A Finitely Strained Solid |

Thermodynamic functions with chemical processes are detailed here for a solid
undergoing finite strain. Following the outlines of Sects. 3.4.3 and 3.5.2, the
Lagrangian forms are presented first.

The change of internal energy du.Ee; s; c˛/ in the Lagrangian description is

du.E e; s; c˛/ D T 
 W dE e C T ds C
X

˛

��̨ dc˛; (3.200)

T 
 D @u

@E e
; T D @u

@s
; ��̨ D @u

@c˛
(3.201)

where c˛ is the Lagrangian volume molar concentration defined by

c˛ D c˛ J (3.202)

and ��̨ is the corresponding chemical potential.



3.5 Chemical Process and Thermodynamics 119

Referring back to (3.176) the internal energy u.E e; s; c˛/ is given by

u.E e; s; c˛/ D T 
 W E e C T s C
X

˛

��̨ c˛: (3.203)

This gives Euler’s equation. The Gibbs-Duhem relation is obtained by

E e W dT 
 C s dT C
X

˛

c˛ d��̨ D 0: (3.204)

The Helmholtz free energy f .E e;T; c˛/ is calculated as

f .E e;T; c˛/ D u.E e; s; c˛/� T s D T 
 W E e C
X

˛

��̨ c˛ (3.205)

where its increment is

df D T 
 W dE e � s dT C
X

˛

��̨ dc˛; (3.206)

T 
 D @f

@E e
; s D �@f

@T
; ��̨ D @f

@c˛
: (3.207)

The enthalpy h.T 
; s; c˛/ is given as

h.T 
; s; c˛/ D u.E e; s; c˛/� T 
 W E e D T s C
X

˛

��̨ c˛ (3.208)

and its increment is

dh D �E e W dT 
 C T ds C
X

˛

��̨ dc˛; (3.209)

E e D � @h

@T 

; T D @h

@s
; ��̨ D @h

@c˛
: (3.210)

The Gibbs free energy g.T 
;T; c˛/ can be written as

g.T 
;T; c˛/ D h.T 
; s; c˛/ � T s D u.E e; s; c˛/ � T 
 W E e � T s D
X

˛

��̨ c˛

(3.211)
and its increment is

dg D �E e W dT 
 � s dT C
X

˛

��̨ dc˛; (3.212)

E e D � @g

@T 

; s D �@g

@T
; ��̨ D @g

@c˛
: (3.213)
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The grand potential �.E e;T; ��̨/ is calculated as

�.E e;T; ��̨/ D u.E e; s; c˛/ � T s �
X

˛

��̨ c˛ D T 
 W E e (3.214)

and its increment is

d� D T 
 W dE e � s dT �
X

˛

c˛ d��̨; (3.215)

T 
 D @�

@E e
; s D �@�

@T
; c˛ D � @�

@��̨ : (3.216)

As mentioned in Sect. 3.4.3, only the isotropic material body can form the rate of
internal energy du�.ee; s/ together with the rate Pee of the generalized Eulerian strain
measure ee D REe RT and its energy-conjugate corotational Euler stress tE
 D
RT 
RT . Then Euler’s equation and the change of internal energy are given by

u.ee; s; c˛/ D tE
 W ee C T s C
X

˛

�˛ c˛; (3.217)

du D tE
 W dee C T ds C
X

˛

�˛ dc˛;

tE
 D @u

@ee
; T D @u

@s
; �˛ D @u

@c˛
: (3.218)

The Gibbs-Duhem relation is written as

ee W d tE
 C s dT C
X

˛

c˛ d�˛ D 0: (3.219)

The Helmholtz free energy f .ee; T; c˛/, the enthalpy h.tE
; s; c˛/, the Gibbs free
energy g.tE
; T; c˛/, the grand potential �.ee; T; �˛/ and their increments are given
as follows:

f .ee; T; c˛/ D u.ee; s; c˛/ � T s D tE
 W ee C
X

˛

�˛ c˛; (3.220)

df D tE
 W dee � s dT C
X

˛

�˛ dc˛;

tE
 D @f

@ee
; s D � @f

@T
; �˛ D @f

@c˛
(3.221)

h.tE
; s; c˛/ D u.ee; s; c˛/� tE
 W ee D T s C
X

˛

�˛ c˛; (3.222)
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dh D T ds � ee W d tE
 C
X

˛

�˛ dc˛;

ee D � @h

@tE

; T D @h

@s
; �˛ D @h

@c˛
; (3.223)

g.tE
; T; c˛/ D h.tE
; s; c˛/ � T s D u.ee; s; c˛/� tE
 W ee � T s D
X

˛

�˛ c˛;

(3.224)

dg D �ee W d tE
 � s dT C
X

˛

�˛ dc˛;

ee D � @g

@tE

; s D � @g

@T
; �˛ D @g

@c˛
; (3.225)

�.ee; T; �˛/ D u.ee; s; c˛/ � T s �
X

˛

�˛ c˛ D tE
 W ee; (3.226)

d� D tE
 W dee � s dT �
X

˛

c˛ d�˛;

tE
 D @�

@ee
; s D � @�

@T
; c˛ D � @�

@�˛
: (3.227)

3.5.4 Thermodynamic Functions in a Thermo-
mechanochemical Field: A Fluid

Referring to Sect. 3.4.4 the change of internal energy u.�e; s; c˛/ is given by

du D p
 d�e C T ds C
X

˛

�˛ dc˛;

p
 D @u

@�e
; T D @u

@s
; �˛ D @u

@c˛
: (3.228)

Euler’s equation and the Gibbs-Duhem relation are

u.�e; s; c˛/ D p
 �e C T s C
X

˛

�˛ c˛; (3.229)

�e dp
 C s dT C
X

˛

c˛ d�˛ D 0: (3.230)

The Helmholtz free energy f .�e; T; c˛/, the enthalpy h.p
; s; c˛/, the Gibbs free
energy g.p
; T; c˛/, the grand potential �.�e; T; �˛/ and their changes are given by



122 3 Non-equilibrium Thermodynamics

f .�e; T; c˛/ D u.�e; s; c˛/ � T s D p
 �e C
X

˛

�˛ c˛; (3.231)

df D p
 d�e � s dT C
X

˛

�˛ dc˛;

p
 D @f

@�e
; s D � @f

@T
; �˛ D @f

@c˛
(3.232)

h.p
; s; c˛/ D u.�e; s; c˛/ � p
 �e D T s C
X

˛

�˛ c˛; (3.233)

dh D T ds � �e dp
 C
X

˛

�˛ dc˛;

�e D � @h

@p

; T D @h

@s
; �˛ D @h

@c˛
; (3.234)

g.p
; T; c˛/ D h.p
; s; c˛/� T s D u.�e; s; c˛/ � p
 �e � T s D
X

˛

�˛ c˛;

(3.235)

dg D ��e dp
 � s dT C
X

˛

�˛ dc˛;

�e D � @g

@p

; s D � @g

@T
; �˛ D @g

@c˛
; (3.236)

�.�e; T; �˛/ D u.�e; s; c˛/� T s �
X

˛

�˛ c˛ D p
 �e; (3.237)

d� D p
 d�e � s dT �
X

˛

c˛ d�˛;

p
 D @�

@�e
; s D � @�

@T
; c˛ D � @�

@�˛
: (3.238)

3.6 Mixture Theory for a Multi-component Solution

For a multi-component mixture with 1; 2; 3; � � � N -species in a fundamentally
miscible solution, which involves a process of chemical reactions, we establish a
framework of continuum thermodynamics theory. The mixture might be a liquid
or gas; however, since we mainly use a mass-averaged velocity (defined later), the
liquid solution might be more appropriate. The description is Eulerian because we
are considering a fluid.
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Fig. 3.4 Reference and current bodies for the mixture theory

For any solution we distinguish between solute and solvent. Here we can state
that the first species is the solvent and the rest of the .2; 3; � � � N/-species are
solutes. We shall introduce a non-equilibrium thermodynamics theory for this
solution that will treat the coupled problem of stress, diffusion with reactions and
heat transfer. The field variables for the chemical field are listed in Table 3.1.

We extend the theory of mixture given by Bowen (1976) (see also Drew and
Passman 1998; Coussy 1995; Lewis and Schrefler 2000), though the notation is
different. A continuum body with N -components is represented as B˛ .˛ D
1; 2; � � � ; N /. It should be noted that due to the mixture theory the body B˛ of the
˛th component defines the independent reference configuration for each component.
The case of two components are schematically shown in Fig. 3.4. The motion of a
spatial point x in the current body
 � R

3 can be described by

x D �˛.X˛; t/ D xi ei (3.239)

where e i .i D 1; 2; 3/ are the orthogonal Eulerian basis of the spatial coordinates,
�˛ is the deformation function for the ˛th component, which is sufficiently smooth,
X˛ is the material point of the ˛th component in the reference configuration, and
t is a time. Let @
 be the boundary of 
. Since the function �˛ is smooth, the
reference position X˛ can be given by

X˛ D ��1
˛ .x; t/ D X˛K EK (3.240)

where ��1
˛ is the inverse function of the deformation function, and EK .K D

1; 2; 3/ are the orthogonal Lagrangian basis of material coordinates.
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The particle velocity v˛ of a material pointX˛ at a time t is obtained as

v˛ D d.˛/�˛.X˛; t/

dt

ˇ
ˇ
ˇ
ˇ
X˛Dconstant

: (3.241)

We here denote the material time-derivative d.˛/�=dt of a function �.x; t/ with
respect to the ˛th component as

d.˛/�

dt
D @�

@t
C v˛ � grad�: (3.242)

The symbol ‘grad’ shows the gradient in the spatial coordinate system.
The deformation gradient F ˛ D F˛iK ei ˝ EK and the inverse transformation

F �1
˛ D F�1

˛Ki EK ˝ ei are given by

F ˛ D Grad�˛.X˛; t/; F˛iK D @xi

@X˛K
(3.243)

F �1
˛ D grad��1

˛ .x; t/; F�1
˛Ki D @X˛K

@xi
(3.244)

where the symbol ‘Grad’ shows the gradient in the material coordinate system. The
time derivative of the Jacobian J˛ is calculated as

d.˛/J˛

dt
D J˛ div v˛; J˛ D j detF ˛ j (3.245)

where the symbol ‘div’ shows the divergence in the spatial coordinate system.

3.6.1 Mass Conservation Law

Let the total mass of species ˛ be M˛ , the mass change due to chemical reaction
be R˛ . The mass conservation law for the species ˛ can be written as

d.˛/M˛

dt
D R˛; (3.246)

M˛ D
Z




�˛ dv; R˛ D
Z




�˛ 	˛ dv .Š˛/ (3.247)

(cf. Sect. 3.5). Here 	˛ is the volumetric density function of R˛ (i.e., the mass source
term per unit volume). Applying Reynolds’ transport theorem and the divergence
theorem we obtain a local form of the differential equation for mass conservation as
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d.˛/�˛

dt
C �˛ div v˛ D @�˛

@t
C div.�˛v˛/ D �˛	˛ .Š˛/ (3.248)

where v˛ is the particle velocity of the ˛th species.
By summing up (3.248) for all the species, the reaction terms cancel each other:

X

˛

�˛	˛ D 0: (3.249)

Thus we have the total mass conservation law as follows:

dM
dt

D 0; M D
X

˛

M˛:

Its local form is obtained as

d�

dt
C � div v D @ �

@t
C div .�v/ D 0 (3.250)

where � is the total mass density defined by (3.169), and c˛ D �˛=� is the mass
concentration (i.e., the mass fraction) shown in Table 3.1. We have defined the mass-
averaged velocity v as

v D 1

�

NX

˛D1
�˛v˛ D

NX

˛D1
c˛v˛: (3.251)

Note that qm D �v represents the total mass flux. In (3.250) we have introduced the
material time-differentiation d =dt with respect to the mass-averaged velocity v as
follows:

d

dt
D @

@t
C v � grad . /: (3.252)

The velocity gradientL, the stretch tensorD and the spin tensorW are defined by

L D grad v D D CW ; (3.253)

D D 1

2

�
LCLT

�
; W D 1

2

�
L �LT �: (3.254)

If we use the mass-averaged velocity v, (3.248) can be written as

d�˛

dt
C �˛div v D �div .�˛v˛/C �˛	˛ .Š˛/ (3.255)

where we have defined the diffusion velocity v˛ as follows:

v˛ D v˛ � v: (3.256)
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By eliminating v from (3.250) and (3.255), we have

d�˛

dt
� c˛ d�

dt
D �div .�˛v˛/C �˛	˛ .Š˛/: (3.257)

We take the material time-differentiation for the mass concentration c˛ D �˛=�with
respect to the mass-averaged velocity v, which gives

�
dc˛

dt
D �d�

dt
c˛ C d�˛

dt
: (3.258)

By substituting (3.258) into (3.257), we finally obtain the following diffusion
equation for a material in motion:

�
dc˛

dt
D �div .�˛v˛/C �˛	˛ .Š˛/: (3.259)

where

qm˛ D �˛v˛ .Š˛/ (3.260)

represents a mass flux of the species ˛.

Note 3.13 (Evaluation of the source term due to reaction). Assume that in the
current state the species ˛ is involved in the r-th stage of the chemical reaction,
and the reaction rate can be written in the form wr D d�r=dt as introduced by
(E.39) in Appendix E. If the stoichiometric coefficient of this reaction stage is given
by �˛r for the species ˛, then the amount of mass produced during all the reaction
processes is given by

�˛	˛�V D
X

r

m˛ �˛r wr .Š˛/

where V is the volume of the reaction system (for simplicity, a homogeneous and
isotropic system is assumed), andm˛ is the molecular weight of the species ˛. Since
we have the relation n˛ m˛ D �˛�V , the term 	˛ is evaluated by

	˛ D
X

r

��˛r wr ; ��˛r D �˛r

n˛
.Š˛/ (3.261)

where ��˛r is the stoichiometric coefficient per unit mole.
As implied by (E.144) in Appendix E.9 concerning the chemical reaction, the

reaction rate w is commonly represented in a power form depending on the reaction
order, and the term on the r.h.s. of (3.261) is given by

	
˛ D
X

r

��˛r wr D
X

r

��˛r kr
Y

˛
.cr˛/

pr˛ .Š˛/ (3.262)
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where the suffix r implies the reaction stage r , kr is its reaction rate constant, cr˛ is
the concentration of species ˛ and pr˛ is the reaction order of species ˛. �

Note 3.14 (On the average velocities). In this section we use the mass-averaged
velocity (3.251); however in some cases we may use molar-averaged velocity:

v˘ D
NX

˛D1
x˛v˛: (3.263)

Let us consider an example shown in Fig. 3.5a of a gas diffusion problem enclosed
in two glass bulbs under constant temperature/pressure. The l.h.s. bulb contains
gaseous nitrogen (N2, molecular weight 28.02), and the r.h.s. bulb contains gaseous
hydrogen (H2, molecular weight 2.016). Initially the valve at the center is closed; the
amount of both gases are the same, therefore the mass center is in the nitrogen gas.
After opening the valve the gases are mixed homogeneously, and the mass center
moves to the center. Thus the mass-averaged velocity shows a finite value, whereas
the molar center is not transferred, which implies the molar-averaged velocity is null
in this case.

For the diffusion problem of 50 wt% glycerin solution as shown in Fig. 3.5b,
since the mass density of this solution is 1.1 g/cm3 which is almost the same
as the density of pure water (1.0 g/cm3), the mass-averaged velocity is almost
zero (glycerin: HOCH2 CH(OH)CH2OH, molecular weight 92.09, specific gravity
1.26362 at 20ıC), while the molar concentration of this solution is 33.21 mol/l

Fig. 3.5 Diffusion
experiments for evaluating
mean velocities (Cussler
1997, Figs. 3.1–3.2)
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which is less than the molar concentration of water 55.56 mol/l , therefore the molar-
averaged velocity is of finite value (Cussler 1997; Bird et al. 2002).

In this work we mainly treat solids and liquids, therefore we employ the mass-
averaged velocity. For a detailed treatment that uses the molar-averaged velocity,
we can consult Chap. 8 of Slattery (1999). Some books treat the volume-averaged
velocity; however for a mixture it is almost impossible to measure the volume of
each species, therefore descriptions that employ the volume-averaged velocity are
not feasible. �

3.6.2 Conservations of Linear Momentum and Moment
of Momentum

Suppose an external traction t˛ commonly acts on the ˛th species, then the
conservation equation of linear momentum for species ˛ is given by

d.˛/L˛
dt

D F˛; (3.264)

L˛ D
Z




�˛v˛ dv; F˛ D
Z

@


t˛ ds C
Z




�˛ b˛ dv C
Z




 ˛ dv .Š˛/;

(3.265)

 ˛ D
X

ˇ .ˇ¤˛/
 ˛ˇ (3.266)

where b˛ is the body force acting on each species and  ˛ˇ is the interactive force
acting from species ˇ to species ˛. This force vanishes if summed up for all
species ˛:

X

˛

X

ˇ .ˇ¤˛/
 ˛ˇ D 0: (3.267)

Note 3.15 (Reynolds’ transport theorem for a mixture). Reynolds’ transport theo-
rem for a component ˛ can be written as

d.˛/

dt

Z




� dv D
Z




�
d.˛/�

dt
C � div v˛

�

dv .Š˛/ (3.268)

If the mass conservation law (3.248) including a reaction term is satisfied, (3.268)
is modified as follows:

d.˛/

dt

Z




�˛� dv D
Z




�

�˛
d.˛/�

dt
C �˛	˛�

�

dv .Š˛/ (3.269)

where 	˛ is a source term of mass per unit mass. �
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By applying Reynolds’ transport theorem (3.269) to (3.264), we have the following
local form:

�˛
d.˛/v˛
dt

D div .� ˛/
T C �˛ .b˛ � 	˛v˛/C ˛ .Š˛/ (3.270)

where we have used the relation t˛ D � T˛ n. Note again that we are considering a
miscible solution.

Note 3.16 (On the Fundamental Identity (Truesdell and Toupin 1960, pp. 469–474)).
For a function '˛ we have the following material time-differential with respect to
the velocity v˛:

�˛
d.˛/'˛

dt
D @.�˛'˛/

@t
C @

@xk
.�˛'˛vk/C @

@xk
.�˛'˛v˛k/

�'˛
�
@�˛

@t
C @

@xk
.�˛v˛k/

�

.Š˛/ (3.271)

where the mass-averaged velocity and the diffusion velocity are given as vk DP
˛ c˛v˛k .Š˛/ and v˛k D v˛k � vk , respectively.
A mass-average of '˛ is given as

' D
X

˛

c˛'˛; (3.272)

and by adding up (3.271), we obtain the following Fundamental Identity:

X

˛

c˛
d.˛/'˛

dt
D d'

dt
C '

�

�
@�

@t
C @

@xk
.�vk/

�

C
X

˛

1

�

@

@xk
.�˛'˛v˛k/

�
X

˛

'˛

�

�
@�˛

@t
C @

@xk
.�˛v˛k/

�

.Š˛/: (3.273)

If we have the mass conservation law (3.248) and (3.250), then (3.273) is modified
as follows:

X

˛

c˛
d.˛/'˛

dt
D d'

dt
C
X

˛

1

�

@

@xk
.�˛'˛v˛k/�

X

˛

'˛	˛ .Š˛/: �

(3.274)

By dividing (3.270) by � and applying the Fundamental Identity (3.274), we have

X

˛

c˛
d.˛/v˛
dt

D dv
dt

C
X

˛

1

�
Œdiv .�˛v˛ ˝ v˛/C div .�˛v ˝ v˛/� �	˛v˛� :

(3.275)
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If we apply the diffusion equation (3.259) and the relation

X

˛

�˛	˛ D 0;
X

˛

c˛ D 1 )
X

˛

dc˛

dt
D 0;

X

˛

�˛v˛ D 0; (3.276)

to the third term of the r.h.s. of (3.275), this term becomes null. Since the third term
of the r.h.s. of (3.275) is null, the sum of (3.270) results in the following averaged
equation of motion:

�
dv
dt

D div � C � b .Š˛/ (3.277)

where we have introduced the diffusive stress � and the diffusive body forceb as
follows:

� D
X

˛

�
.� ˛/

T � �˛v˛ ˝ v˛
	
; b D

X

˛

.b˛ C 	˛v˛/: (3.278)

The conservation of moment of linear momentum for a mixture is introduced in
the same way as in Sect. 2.5, and we conclude that the averaged stress � for the
mixture is also symmetric:

� D .� /T ) � D � T : (3.279)

3.6.3 First Law of Thermodynamics in a Thermo-
mechanochemical Continuum: Conservation of Energy

For each component we apply Stokes’ power formula (3.18):

d.˛/E�˛
dt

D d.˛/K˛

dt
C d.˛/U�˛

dt
D d.˛/W˛

dt
; (3.280)

K˛ D
Z




�˛ �˛ dv; �˛ D 1

2
v˛ � v˛ .Š˛/; (3.281)

d.˛/W˛

dt
D
Z

@


t˛ � v˛ ds C
Z




�˛ b˛ � v˛ dv C
Z




 ˛ � v˛ dv .Š˛/;

(3.282)

d.˛/U�˛
dt

D
Z




�˛
d.˛/u�˛
dt

dv;
d.˛/u�˛
dt

D � 
˛ W D˛ .Š˛/; (3.283)

� 
˛ D 1

�˛
� ˛; D˛ D 1

2

�
grad v˛ C grad vT˛

�
.Š˛/: (3.284)
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Applying Reynolds’ transport theorem (3.269) to Stokes’ power formula (3.280)
gives the following local form:

�˛

�
d.˛/�˛

dt
C d.˛/u�˛

dt

�

D div .� ˛v˛/C �˛ b˛ � v˛ C ˛ � v˛ � �˛	˛�˛ .Š˛/: (3.285)

The First Law of Thermodynamics is given by (3.40). That is, if we add a flux to
the r.h.s. of (3.280), the reversible (i.e., elastic) internal energy is increased. If this
procedure is introduced for the multi-component solution of species ˛, we have

d.˛/E˛
dt

D d.˛/K˛

dt
C d.˛/U˛

dt
D d.˛/W˛

dt
C d.˛/Q˛

dt
C d.˛/C˛

dt
: (3.286)

where U˛ gives the reversible internal energy, including mechanical, thermal and
chemical effects. The mass density function u˛ may be written as

d.˛/U˛
dt

D
Z




�˛
d.˛/u˛
dt

dv .Š˛/: (3.287)

The heat flux d.˛/Q˛=dt and mass flux d.˛/C˛=dt are given by

d.˛/Q˛

dt
D �

Z

@


q˛ � nds C
Z




�˛ r˛ dv .Š˛/; (3.288)

d.˛/C˛
dt

D
Z




�˛ �˛	˛ dv .Š˛/ (3.289)

where q˛, r˛, 	˛ are the heat flux, the heat source per unit mass and the mass source
per unit mass (e.g., by a chemical reaction), respectively. The local form of the First
Law of Thermodynamics (3.289) can be obtained as

�˛

�
d.˛/�˛

dt
C d.˛/u˛

dt

�

D div .� ˛v˛/C�˛ b˛ � v˛C ˛ � v˛ � div q˛C�˛r˛ C �˛	˛ �˛ � �˛	˛�˛ .Š˛/:
(3.290)

By subtracting the Stokes’ power formula (3.285) from the First Law of
Thermodynamics (3.290), we have the following local form of the dissipative energy
equation:

�˛
d.˛/u˛
dt

D �˛
d.˛/u�˛
dt

� divq˛ C �˛r˛ C �˛	˛ �˛ .Š˛/: (3.291)
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If it can be assumed that in the first term d.˛/u�˛=dt D �


˛ W D˛ of the r.h.s. of

(3.291), the stress tensor � 
˛ is coaxial with the stretch tensorD˛ , we have

X

˛

c˛�


˛ W D˛ D � 
 W D; (3.292)

� 
 D
X

˛

c˛�


˛; D D

X

˛

D˛ (3.293)

where c˛ D �˛=�. Therefore by summing up the component-wise dissipative energy
equation (3.291) with ˛ after dividing �, we obtain the following dissipative energy
equation for the total components:

�
du

dt
D �

du�
dt

� div q C � r �
X

r

Ar wr (3.294)

where we have

du�
dt

D � 
 W D (3.295)

q D q � qmvI q D
X

˛

q˛; qmv D
X

˛

�˛ u˛ v˛ (3.296)

r D r C r u C r �I r D
X

˛

c˛ r˛; r u D
X

˛

u˛	˛; r � D
X

˛

c˛�˛	˛;

(3.297)

Ar D �
X

˛

c˛ �
�
˛r �˛: (3.298)

Note that in obtaining the term du=dt , we have used the Fundamental Identity
(3.274). In fact, the terms qme and r u are due to the Fundamental Identity. The
term Ar is an affinity at the stage r of the reaction, which is calculated by
multiplying the chemical potential �˛ with (3.261), dividing by the molecular
weight m˛ and summing up with respect to ˛. A discussion of affinity is given
in Appendix E.3(b).

3.6.4 Entropy Inequality in a Thermo-mechanochemical
Continuum

In a multi-component mixture the entropy inequality may not be satisfied for each
component. Therefore we introduce the inequality for the total mixture. Once again,
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as discussed in Sect. 3.3.2, we emphasize that the entropy inequality is introduced
for a system in which non-measurable energy components exist.

As described in Sect. 3.2.1, the rate of internal energy due to stress du�=dt D
� 
 W D is a combination of the elastic (i.e., reversible) part due�=dt and the inelastic
(i.e., irreversible) part dui�=dt (du� D due�Cdui� ). Thus the rate of internal energy
including the chemical process is written as

du

dt
D due�

dt
C T

ds

dt
C
X

˛

�˛
dc˛

dt
.Š˛/ (3.299)

where we have assumed that the temperature T is common to all components, and
the term ds D P

˛ ds˛ represents the change of entropy of all components.
By substituting the dissipative energy equation (3.294) into (3.299) and applying

the diffusion equations (3.259) and (3.276), we obtain

T
ds

dt
D dui�

dt
� 1

�
divq C r c C � c (3.300)

r c D r C r u; (3.301)

� c D 1

�

X

˛

c˛�˛v˛ � grad � � 1

�

X

r

Ar wr : (3.302)

As mentioned in Sect. 3.3, if incomplete data is provided due to insufficient
measurement, instead of (3.300) we have the following entropy inequality:

T
ds

dt
� dui�

dt
� 1

�
divq C r c C � c (3.303)

where dui� =dt represents the internal dissipation due to mechanical force, which
corresponds to the dissipation function ˆ.D/ of (3.153)2 for a fluid, and r u C� c

represents an internal energy dissipation during the chemical process.

3.7 Thermodynamics Laws and Constitutive Theory |

The essentials of the constitutive theory are that the experimental results are
reproduced after satisfying the requirements of thermodynamics such as the
Clausius-Duhem inequality and the Gibbs-Duhem relation. The constitutive theory
that includes chemical processes is complex because all the conservation laws
for mass, linear momentum/moment of momentum and energy are involved, and
experiments to determine the parameters are extremely difficult to conduct.
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3.7.1 Constitutive Theory of a Solid with Chemical Processes
in the Small Strain Field

In this subsection we show an example of the thermodynamical restrictions required
to derive the constitutive equation for a multi-component solid under small strain
conditions with chemical processes included.

First let us satisfy the Gibbs-Duhem relation:

"e W d� 
 C s dT C
NX

˛D1
c˛ d�˛ D 0: (3.304)

The Gibbs free energy per unit mass g.� 
; T; c˛/ is defined by (3.184):

g.� 
; T; c1; : : : ; c˛; : : : ; cN / D
X

˛

�˛ c˛: (3.305)

From this definition it is understood that if we retain the ˛-th concentration c˛ and
make the other concentrations null, we have �˛ c˛:

g.� 
; T; 0; : : : ; c˛; : : : ; 0/ D �˛ c˛: (3.306)

Using (3.185) we have

"e D � @g

@� 


ˇ
ˇ
ˇ
ˇ
T; c˛

; s D � @g
@T

ˇ
ˇ
ˇ
ˇ
c˛; � 


(3.307)

and we can define the partial molar strain "e˛ and partial molar entropy s˛ as

"e˛ D � @
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ˇ
ˇ
ˇ
ˇ
T; c˛

D �@�˛
@� 


c˛;

s˛ D � @

@T
g.� 
; T; 0; : : : ; c˛; : : : ; 0/

ˇ
ˇ
ˇ
ˇ
c˛; � 


D �@�˛
@T

c˛

(3.308)

As implied from (3.305) to (3.308), the overall strain and entropy can be written as
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On the other hand, Maxwell’s relation (3.193) gives
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(3.310)
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Then if we introduce d˛ by

d˛ D c˛

�

r �˛ � @�˛

@� 
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 � @�˛
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r T
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D c˛
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r T
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(3.311)

the Gibbs-Duhem relation (3.304) is satisfied if

X

˛

d˛ D 0: (3.312)

We can now introduce the extended Fick’s law in terms of diffusion as follows:

qm˛ D �
X

ˇ

D˛ˇdˇ (3.313)

where qm˛ is the mass flux of a species ˛, which is introduced by (3.260), and D˛ˇ

are the material parameters/functions that are determined by experiments. Thus,
under the constraint (3.312), we may be able to determine the constitutive relation
from experiments. Note that from (3.260) and since

P
˛ �˛v˛ D 0, the following

constraint must be satisfied:

X

˛

qm˛ D �
X

˛

X

ˇ

D˛ˇ rcˇ D 0: (3.314)

Following the same procedure we can introduce the extended Fourier’s law for
heat conduction and the extended Hooke’s law for deformation, which will not be
described here.

3.8 Summary of the Framework of Non-equilibrium
Thermodynamics |

Carnot and Clausius founded the theoretical basis of classical ‘equilibrium’ ther-
modynamics, and it has long been applied to many engineering problems, although
there are some inconsistencies. The basis of classical thermodynamics lies in the
empirical fact that the efficiency of practical heat engines never exceeds unity, that
is, any heat engine traces the irreversible process, and eventually the entropy of the
heat engine system necessarily increases. Such results, especially the Second Law,
have been widely applied even though the true implications are beyond complete
comprehension, and sometimes it is suggested that the entropy of the universe is
ever-increasing. Is this true?
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If we enclose a rare gas in a box that is closed, adiabatic and of constant
volume (i.e., an isolated system of a rare gas) and keep the steady state at a
given temperature, the internal energy does not change, therefore the entropy never
increases. This system has no autonomous internal mechanism to increase the
entropy.

Let us consider a thermodynamical system. If we can correctly measure and
estimate all the fluxes (i.e., power, heat flux, mass flux, etc.) and field variables
such as temperature and stress, is the process reversible or irreversible? Actually it
is impossible to measure and specify all the flux and field variables.

Considering the above discussions, the Law of Non-equilibrium Thermody-
namics presented here, in Newtonian mechanics, can be summarized as follows:

1. All the systems of thermodynamics are treated under Newtonian mechanics.
2. Stokes’ power law is satisfied:

dE� D dK C dU� D dW (3.315)

where E� is the total energy in the absence of the effects of heat, chemical action,
etc., K is the kinetic energy, U� is the total internal energy due to the stress,
including a reversible (i.e., recoverable) part and an irreversible (i.e., dissipative)
part and W is the external work. The increment dU� consists of a reversible part
dU e� and an irreversible part dU i� :

dU� D dU e� C dU i� : (3.316)

3. If all the flux d† and power dW that are exchanged with the surroundings are
measurable, then the conservation of energy law

dE D dK C dU D dW C d† (3.317)

is satisfied, where E is the total recoverable energy and U is the ‘reversible
internal energy’. The flux d† includes the heat flux dQ, the mass-induced flux
dC in chemical processes and others except for the power dW .
Using the power law and the conservation of energy law the dissipative energy
equation is derived as

dU D dU� C d†: (3.318)

By substituting (3.316) into (3.318), we obtain

dUq D dU i� C d† (3.319)

where we give dUq D dU � dU e� . The meaning of (3.319) is clearly
understandable: The change of internal heat energy dUq consists of two parts;
i.e., the change of irreversible internal mechanical energy dU i� and the heat
supply.
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We should clearly understand the fact that Stokes’ power law (3.315) involves
the change of the irreversible internal mechanical energy dU i� , while the energy
conservation law is given for the change of the reversible internal energy dU .

4. The change of internal energy dUq due to the heat flux dQ, a part of dU , is
formed by the temperature T and the change of entropy dS:

dUq D T dS: (3.320)

Note that (3.320) is approved if every heat flux and temperature field are correctly
identified. For the system where an amount of non-measurable heat flux�.dQ/ is
expected, the entropy corresponding to�.dQ/ D T dS i can be introduced. dS i
is referred to as the entropy production. In this case, the change of total entropy
dS consists of the changes of entropy production dS i and the exchangeable
entropy dSe , which corresponds to the measurable flux dQM D T dSe . Because
of diffusivity of heat, dS i is nonnegative: i.e.

dS � dS i D dQ
T
; dS i � 0: (3.321)

5. In a homogeneous body at absolute zero temperature the entropy S is null
(Nernst-Planck theorem).

6. The internal energy U , the total internal energy U� induced by stress and the
entropy S are sufficiently smooth and differentiable, and their density functions
exist. The derivatives of U and U� are positive definite.

Discussion 1: Diffusive properties in temperature and mass-diffusion problems.
It is commonly accepted that the Second Law supports the observation that there is
heat and mass transfer taking place in the presence of a gradient. However, if we
have the positiveness definite property of the derivatives of internal energy U with
respect to entropy and concentration, respectively (i.e., resulting in Fourier’s law
and Fick’s law), the same results can be obtained. It is surprising that the diffusive
processes and properties in temperature and mass-diffusion problems are discussed
on the basis of the Second Law, whereas the positive definiteness property of the
internal energy U under Hooke’s law is proved without appeal to the Second Law.

Discussion 2: On viscous fluids. In the motion of viscous fluid, we always observe
some dissipation of internal energy. This, however, does not cause an increase
of entropy, but contributes to a rise of internal temperature. This is because, at
the molecular level, the increase of kinetic energy of the molecules causes a
temperature rise. Thus for the fluid motion problem it is fundamentally necessary
to consider the temperature field; however, we must discuss whether or not the
temperature field can be correctly measured in a fluid, non-invasively.

If we can account for every mechanical and thermal effect, the entropy inequality
(3.321) must be regarded as an equality. That is, only the first part of the Second Law
of Thermodynamics is needed to prove the existence of entropy.



Chapter 4
Virtual Work Equation, Variational Methods
and Energy Principles

In this Chapter we consider the virtual work equation of a static problem and its
relationship to the variational method and energy principle.

4.1 Variational Method for a One-dimensional
Elastic Problem

First, we consider a simple one-dimensional elastic problem.

4.1.1 Strong Form

The system for the one-dimensional elastic problem can be given by a governing
equation (4.1a), the Dirichlet (i.e., displacement) boundary condition (4.1b) and the
Neumann (i.e., traction) boundary condition (4.1c). This system is referred to as the
strong form: [SF].

[SF]:
d�

dx
C 	 D 0; x 2 
 D .x1; x2/ (4.1a)

u.x/ D Nu at x D xu (4.1b)

�n D Nt at x D xt (4.1c)

where � is the stress, 	 D �bx is the body force per unit volume, u is the
displacement, n is the unit outward normal (n D �1 at x D x1, n D C1 at x D x2),
and xu and xt are respectively, the boundaries at which displacements and tractions
are specified. The strain

" D du

dx
(4.2)
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is related to the stress � by Hooke’s law:

� D E" (4.3)

4.1.2 Weak Form and the Virtual Work Equation

Let v be an arbitrary function, which is null on the displacement boundary:

v D 0 on x D xu (4.4)

We multiply (4.1a) by v.x/, integrate it and introduce an integration by parts to the
first term, then we can use the condition (4.4) and the Neumann boundary condition
(4.1c), and we finally obtain the following weak form [WF], which is ‘equivalent’
(see Note 4.1) to the strong form (4.1):

[WF] W Nt v.xt /�
Z x2

x1



�.u/ �.v/� 	 v

�
dx D 0 8v .v D 0 at x D xu/

(4.5)

where �.v/ D dv=dx.
We can regard the arbitrary function v as a virtual displacement ıu, then (4.4)

corresponds to a null condition of the virtual displacement ıu on xu. We write a
virtual strain as

ı" D d.ıu/

dx
D ı

�
du

dx

�

(4.6)

In this notation the weak form (4.5) is equivalent to the following virtual work
equation [VW]:

[VW] W Nt ıu.b/�
Z x2

x1



�.u/ ı" � 	 ıu

�
dx D 0 8ıu .ıu D 0 at x D xu/

(4.7)

Note 4.1 (Equivalence between the strong form and weak form: Fundamental
Lemma of the Variational Problem). Since the weak form (4.5) is derived from
the strong form (4.1), the solution of the strong form is exactly the solution of
the weak form. The converse is not always true. If the solution of the weak form
can be regarded as sufficiently smooth, the converse is true, which is proved
by the Fundamental Lemma of the Variational Problem. Note that the first term
defined on the boundary of (4.5) can be considered separately from the rest of the
terms defined in the domain, since v is arbitrary both on the boundary and in the
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domain
 D .x1; x2/. Therefore we have the following Fundamental Lemma of the
Variational Problem for a domain
:

Z






�.x/ v.x/

�
dx D 0 8v ) �.x/ 	 0 8x 2 
 (4.8)

where the function � is continuous.1 We use a proof by contradiction (or reduction
ad absurdum).

Proof. Assume that the given condition (i.e., the integral D 0 8v) is satisfied;
however since �.�/ > 0 at a point x D � in 
 D .x1; x2/ (note that if �.�/ < 0,
we can also apply the procedure for the case where ��.�/>0). Then there exists a
constant ı > 0 such that �.x/> 0 8x 2 
ı D Œ��ı; �Cı�, since � is continuous.
We choose the arbitrary function v as v.x/>0; x 2 
ı, thus we have

Z


ı



�.x/ v.x/

�
dx > 0

This contradicts the given condition, which implies that �.x/ 	 0 at every point
in 
. �

4.1.3 Principle of the Energy Minimization and a Variational
Method

The weak form (4.5) can be rewritten in the following alternative form:

[WF] W l.v/� a.u; v/ D 0 8v .v D 0 at x D xu/ (4.9a)

a.u; v/ D
Z x2

x1

E
du

dx

dv

dx
dx; l.v/ D Nt v.xt / �

Z x2

x1

	 v dx (4.9b)

where a.�; �/ is referred to as a bilinear form, which is positive definite such that

a.v; v/ � 0 8v (4.10)

since E>0.

1The continuity of � gives an essential condition for ensuring the equivalence between the strong
form and the weak form. We must be particularly careful of this requirement if we apply a
numerical method such as the finite element method to a problem in which the continuity condition
is not completely satisfied, such as a stress concentration problem at a crack tip.
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We define the energy functional….w/ as follows:

….w/ D l.w/� 1

2
a.w;w/ where w D Nu at x D xu (4.11)

The problem of the energy minimization [EM] is then given by the variational
problem

[EM]: Find u such that ….w/ � ….u/ 8w .w.xu/ D Nu / (4.12)

From Hooke’s law (4.3) the problem of the energy minimization (4.12) is
equivalent to the weak form (4.9a). A proof is given as follows: We set the arbitrary
function w as

w D u ˙ h v .h > 0 W constant/ (4.13)

Thus v is an arbitrary function which takes a fixed value v D 0 only at x D xu. The
inequality (4.12) is written as

˙h
�

Nt v.xt /�
Z x2

x1

�

E
du

dx

dv

dx
� 	 v

�

dx

�

� 1

2
h2
Z x2

x1

E

�
dv

dx

�2
dx � 0

Dividing by h .> 0/ and taking the limit h ! 0, we have

˙
�

Nt v.xt /�
Z x2

x1

�

E
du

dx

dv

dx
� 	 v

�

dx

�

� 0:

Since this inequality must be satisfied for both negative and positive cases, we have
only one possibility of equality:

Nt v.xt / �
Z x2

x1

�

E
du

dx

dv

dx
� 	 v

�

dx D 0 (4.14)

Thus the problem (4.12) is equivalent to (4.9a).
Let us retrace the process of the energy minimization (4.12)–(4.14). We define a

derivative of the functional… in a direction v (i.e., a directional derivative toward v)
as

hd….u/; vi D lim
h!0

1

h

h
….u C h v/�….u/

i
(4.15)

Then the problem of the energy minimization can be symbolically denoted as
follows:

hd….u/; vi D 0 ) l.v/� a.u; v/ D 0 (4.16)

If we follow the style of the variational theory, the above discussions are
equivalent to a process to obtain Euler’s equation by taking a variation of the
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functional (4.11), i.e., from the null condition of the first variation of …, we have

ı….u/ D Nt ıu.xt /�
Z x2

x1

�

E
du

dx

d.ıu/

dx
� 	 ıu

�

dx D 0 (4.17)

It is clear that (4.17) is equivalent to the virtual work equation and the weak form.
If we recall (4.16) and set ıu D v, we have

ı….u/ D hd….u/; ıui D l.ıu/� a.u; ıu/ D 0 (4.18)

Therefore the procedure of taking a variation is equivalent to that of calculating a
directional derivative.

4.2 Variational Method for a Three-dimensional Elasticity
Problem

We consider a variational method for the classical three-dimensional (3D) elasticity
problem for bodies that satisfy static equilibrium.

4.2.1 Strong Form

The system of the equations (i.e., the strong form [SF]) is given by a governing
equation (4.19a), the displacement boundary condition (4.19b) and the traction
boundary condition (4.19c):

[SF]: r � � C �b D 0 in 
 (4.19a)

u D Nu on @
u (4.19b)

�n D Nt on @
t (4.19c)

Additionally we have the following relations:
(Displacement-strain relationship)

" D 1

2

h
ru C .ru/T

i
(4.20)

(Constitutive law: Hooke’s law)
� D D" (4.21)
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4.2.2 Weak Form and the Virtual Work Equation

Let v be an arbitrary vector-valued function, which is null on @
u:

v D 0 on @
u (4.22)

By taking an inner product between v and (4.19a), applying Gauss-Green’s theorem
to the first term, and then applying the conditions (4.19c) and (4.22), we have

[WF] W
Z

@
t

Nt �vds�
Z






� W ���b �v

�
dv D 0 8v .v D 0 on @
u/ (4.23)

where

� D 1

2

h
rv C .rv/T

i
) � W rv D � W 1

2

h
rv C .rv/T

i
D � W � (4.24)

The result (4.23) gives a weak form of the strong form (4.19).
In a manner similar to the one-dimensional problem (4.9), the weak form (4.23)

is formally represented as follows:

[WF] W a.u; v/ D l.v/ 8v .v D 0 on @
u/ (4.25a)

a.u; v/ D
Z




D".u/ W �.v/ dv; (4.25b)

l.v/ D
Z

@
t

Nt � v ds C
Z




�b � v dv: (4.25c)

The bilinear form is also positive definite:

a.v; v/ � 0 8v: (4.26)

If we regard the arbitrary function v as a virtual displacement ıu (i.e., v D ıu),
the condition (4.22) corresponds to

ıu D 0 on @
u (4.27)

Then the term � D �
ı.ru/C ı.ru/T

	
=2 D ı" is regarded as a virtual strain.

Therefore (4.23) can be rewritten as

[VW] W
Z

@
t

Nt � ıu ds C
Z




�b � ıu dv D
Z




� W ı" dv (4.28)

The result (4.28) is known as the virtual work equation.
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4.2.3 Principle of the Energy Minimization and a Variational
Method

An energy functional is given by

….w/ D
Z

@
t

Nt � wds �
Z




�
1

2
D� W � � �b � w

�

dv where w D Nu on @
u

(4.29)
where we should note thatD D DT , and

� D 1

2

h
rw C .rw/T

i

The problem of the energy minimization [EM] is defined as follows:

[EM]: Find u such that ….w/ � ….u/ 8w .w D Nu on @
u / (4.30)

It is not difficult to show that the problem of the energy minimization is ‘equivalent’
to the weak form if we recall the procedure used in the one-dimensional problem.

The directional derivative along v is given by

hd….u/; vi D lim
h!0

1

h

h
….u C hv/ �….u/

i
: (4.31)

Then the energy minimization problem becomes

hd….u/; vi D
Z

@
t

Nt�v ds�
Z




�
D".u/ W �.v/��b�v

�
dv D 0 8v . v D 0 on @
u /

(4.32)
where

".u/ D 1

2

h
ru C .ru/T

i
; �.v/ D 1

2

h
rv C .rv/T

i

The proof is similar to the one-dimensional problem given by (4.12)–(4.14).
If we set ıu D v, ı" D �, the variational form can be obtained as

ı….u/ D hd….u/; ıui D
Z

@
t

Nt � ıu ds �
Z




�
D" W ı" � �b � ıu� dv D 0: (4.33)

4.3 The Penalty Method and the Lagrangian Multiplier
Method

Difficulties can be encountered when applying the weak form and the variational
method described in the previous sections and in such cases the solution must
be sought in the functions that are constrained on the displacement boundary
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(i.e., u D Nu on @
u). We can remove this constraint by using a penalty method
and a Lagrangian multiplier method.

First, we illustrate a penalty variational method, that is, a method of the penalized
energy minimization [PEM]:

[PEM]: Find u such that …p.w/ � …p.u/ 8w (4.34a)

…p.w/ D
Z

@
t

Nt � wds �
Z




�
1

2
D� W � � �b � w

�

dv

C 1

2ı

Z

@
u

�
w � Nu� � �w � Nu�ds (4.34b)

where ı is a positive constant such that 0<ı
1.
Note that in the penalized variational method we seek the solution u from

arbitrary functions w, which are unconstrained. It is observed that if we do not
have the condition u� Nu D 0 on @
u, the final term of (4.34b) gives a large value,
therefore the energy functional…p cannot approach a minimum, which is why this
is designated as the penalty method.

By calculating the directional derivative with w D u˙hv, the penalized weak
form [PWF] is obtained as follows:

[PWF] W hd….u/; vi D
Z

@
t

Nt � v ds C 1

ı

Z

@
u

�
u � Nu� � vds

�
Z




�
D" W � � �b � v

�
dv D 0 8v (4.35)

By applying the divergence theorem to (4.35), the penalized strong form [PSF],
which is equivalent to (4.35), is given by the following governing equation (4.36a),
displacement boundary condition (4.36b) and traction boundary condition (4.36c):

[PSF]: r � � C �b D 0 in 
 (4.36a)

t D 1

ı



u � Nu� on @
u (4.36b)

� T n D Nt on @
t (4.36c)

The condition (4.36b) on @
u gives u D Nu when ı!0, therefore the displacement
boundary condition is satisfied.

An energy minimization method using the Lagrangian multiplier [LEM] can be
introduced as follows:

[LEM]: Find u and � such that …l.w;	/ � …l.u;�/ 8w; 	 (4.37a)

…l.w;	/ D
Z

@
t

Nt � wds �
Z




�
1

2
D� W � � �b � w

�

dv

C
Z

@
u

	 � �w � Nu�ds (4.37b)
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Note that ı in the penalty method was constant, whereas 	 is a (vector-valued)
function, which is introduced as the dual of the displacement that corresponds to a
reactive force on the displacement boundary. We see that, as in the penalty method,
the solution is sought from all functions w without constraint.

By calculating the directional derivative as w D u˙hv; 	 D �˙h
, we obtain
the following Lagrangian weak form [LWF]:

[LWF] W hd….u/; vi D
Z

@
t

Nt � vds C
Z

@
u

�
u � Nu� � 
ds

C
Z

@
u

� � vds �
Z




�
D" W � � �b � v

�
dv D 0 8v; 


(4.38)

Applying the divergence theorem to the fourth term, we obtain

Z

@
t

�Nt� t� � vdsC
Z

@
u

�
.u� Nu/ �
� .t��/ � v	 � vdsC

Z




�r �� ��b� � v dv D 0:

Thus the Lagrangian strong form [LSF] which is equivalent to the weak form (4.38)
is given by

[LSF]: r � � C �b D 0 in 
 (4.39a)

u D Nu; t D � on @
u (4.39b)

� T n D Nt on @
t (4.39c)

The condition (4.39b) shows that � corresponds to the traction on the displacement
boundary @
u.

4.4 Convolution Integral and Energy Forms for Parabolic
and Hyperbolic PDEs

In a conventional variational scheme, we cannot introduce an energy functional for
a parabolic type of partial differential equation (PDE), since the first order partial
differential term of time is involved. In order to overcome this problem (formally),
we introduce a method based on the convolution integral.

The convolution integral of functions '.t/ and  .t/ is defined by

�
' �  �.t/ D

Z t

0

'.t � �/  .�/ d� D
Z t

0

 .t � �/ '.�/ d�: (4.40)
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Fig. 4.1 Functions i.t / and
h.t/, and their generalized
derivatives

Let the function i.t/ be defined by

i.t/ D
(
0 if t < 0;

t if t � 0:
(4.41)

A generalized derivative2 of i.t/ is the Heaviside step function h.t/, and the
derivative of the step function is the delta function (cf. Fig. 4.1). The proof is given
as follows:

˝
i 0; �

˛ D
Z 1

�1
di

dt
�.t/ dt D �

Z 1

0

t
d�

dt
dt D

Z 1

0

�.t/ dt D hh; �i ; (4.42)

˝
h0; �

˛ D
Z 1

�1
dh

dt
�.t/ dt D�

Z 1

0

d�

dt
dt D�.0/D

Z 1

0

ı.t/ �.t � 0/ dt D hı; �i :
(4.43)

We can calculate convolutions between a function '.t/ and i.t/; h.t/:

h � d'
dt

D
Z t

0

1
d'.�/

d�
d� D '.t/ � '.0/; (4.44)

i � d'
dt

D
Z t

0

.t � �/d'.�/
d�

d� D .t � �/'.�/

ˇ
ˇ
ˇ
ˇ

t

0

C
Z t

0

1 � '.�/ d� D h � '.t/ � t '.0/; (4.45)

2Let f be a general function that is bounded (jjf jj < 1) but may not be smooth, whereas � is a
sufficiently smooth function where �.t/!0 if t!˙1. Then a generalized derivative f 0 can be
defined by

hf 0; �i D
Z 1

�1
f 0.t / �.t/ dt D f .t/ �.t/

ˇ
ˇ
ˇ
1

�1
�
Z 1

�1
f .t/ �.t/0.t / dt D � hf; �0i :
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i � d
2'

dt2
D
Z t

0

.t � �/
d2'.�/

d�2
d� D .t � �/

d'.�/

d�

ˇ
ˇ
ˇ
ˇ

t

0

C
Z t

0

1 � d'.�/
d�

d� D '.t/ � t P'.0/� '.0/: (4.46)

4.4.1 Energy Form of a Parabolic PDE

The strong form of a parabolic PDE, that is, the governing equation (for example,
the classical heat conduction equation with constant heat c, variable thermal con-
ductivity k and heat production f ; see, e.g., Carslaw and Jaeger 1959; Selvadurai
2000a), the boundary conditions (BC) and the initial conditions (IC) are given as
follows:

(Strong form: [SF])

c
@u

@t
� r � .kru/� f D 0 in 
 (4.47a)

BC: u.x; t/ D Nu.t/ on @
u; (4.47b)

�kru � n D Nq.t/ on @
q; (4.47c)

IC: u.x; 0/ D u0.x/ in 
: (4.47d)

A convolution integral between (4.47a) and the step function h.t/ is given by

h �
�

c
@u

@t
� r � .kru/� f

�

D c u.x; t/ � h � �r � .kru/
	� Nf D 0; (4.48a)

Nf D h � �f C c u0
�
: (4.48b)

Therefore the weak form and the variational principle (i.e., the principle of the
energy minimization) of the parabolic PDE are obtained as follows:

(Weak form: [WF])

Z

@
q

h � � Nq v
�
dsC

Z




h
c u v Ch � �kru � rv

�� Nf v
i
dv D 0 8v .v D 0 on @
u/:

(4.49)
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(Variational principle: [EM])

Find u such that ….w/ � ….u/ 8w .w D Nu on @
u/ (4.50a)

….w/ D
Z

@
q

h � � Nq w
�
ds C

Z




�
1

2
c w2 C 1

2
h � �krw � rw

� � Nf w
i
dv

(4.50b)

4.4.2 Energy Form of a Hyperbolic PDE

The strong form of a hyperbolic PDE, that is, the governing equation, the boundary
conditions (BC), the displacement-strain relation (DS) and the initial conditions (IC)
are given as follows (for example, the equation of classical elasto-dynamics for a
Hookean solid with mass density � and elasticity constant tensorD; see, e.g., Gurtin
1972; Selvadurai 2000b):

(Strong form: [SF])

�
d2u
dt2

� r � � � b D 0 in 
 (4.51a)

BC: u.x; t/ D Nu.t/ on @
u; (4.51b)

�n D Nt.t/ on @
t ; (4.51c)

IC: u.x; 0/ D u0.x/ in 
; (4.51d)

Pu D Nv0 in 
; (4.51e)

DS: " D �ru C ruT
	
=2; (4.51f)

HK: � D D": (4.51g)

A convolution integral between (4.51a) and the step function i.t/ is given by

i �
�

�
d2u
dt2

� r � � � b
�

D � u.x; t/ � i � �r � � � � Nb D 0; (4.52a)

Nb D i � bC � .t v0 C u0/ (4.52b)

Therefore the weak form and the variational principle (i.e., the principle of the
energy minimization) of the hyperbolic PDE are obtained as follows:

(Weak form: [WF])

Z

@
t

i � �Nt � v
�
dsC

Z




h
� u � v C i � �� W rv

�� Nb � v
i
dv D 0 8v .v D 0 on @
u/:

(4.53)
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(Variational principle: [EM])

Find u such that ….w/ � ….u/ 8w .w D Nu on @
u / (4.54a)

….w/D
Z

@
t

i � �Nt � w
�
dsC

Z




�
1

2
�w � w C 1

2
i � ˚D".w/ W ".w/�� Nb � w

i
dv:

(4.54b)

4.5 Interpolation, Approximation and Galerkin Method

An interpolation of a function � is introduced when a sequence of functions is
selected, and the function � is approximately represented by the sequence. For
example, let us consider a function � such that

�.x/ D
�

0; for � 1 
 x < 0

sin�x; for 0 
 x 
 1
(4.55)

We interpolate � by the following sequence of polynomials:

e1 D 1p
2
; e2 D

r
3

2
x; e3 D

r
8

5
.3x2 � 1/; e4 D

r
7

8
.5x3 � 3x/; � � � (4.56)

Here feig .i D 1; 2; 3; � � � / give a sequence of interpolation functions. Note that the
sequence of functions (4.56) is referred to as the Legendre polynomials, which are
orthonormal such that

˝
ei ; ej

˛ D
Z 1

�1
ei ej dx D

�
0; for i ¤ j

1; for i D j
(4.57)

where we have introduced an inner product of functions f and g by

hf; gi D
Z 1

�1
f .x/ g.x/ dx (4.58)

Then the norm of a function f can be calculated by

kf k D hf; f i1=2 (4.59)

It is not necessary to use the Legendre polynomials for the approximation of the
function (4.55); the following simple polynomials can also be employed:

e1 D 1; e2 D x; e3 D x2; e4 D x3; e5 D x4; � � � (4.60)
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However we should note that the polynomials provided by (4.60) are not orthonor-
mal (

˝
ei ; ej

˛¤ ıij ). We can use other sequences of functions provided they have a
Fourier basis (i.e., sequence of trigonometric functions).3

By using the provided sequence of interpolation functions feig .i D 1; 2; 3; � � � /,
a function �.x/ can be interpolated by a linear combination:

�.x/ ' �h.x/ D �1e1 C �2e2 C �3e3 C � � � D
X

i

�i ei : (4.61)

The coefficients �1; �2; �3; � � � can then be determined by an appropriate approxima-
tion method, such as the least squares method. The procedure for the least squares
method is summarized as follows: A square error between a given function � and
the approximation �h based on the interpolation functions feig is defined by

E.�i/ D 1

2
h� � �h; � � �hi D 1

2

Z 1

�1
�
�.x/ � �h

	2
.x/ dx (4.62)

The minimum of this error can be attained if

@E

@�1
D 0; i D 1; 2; 3; � � � (4.63)

The approximation (4.61) is then substituted into the square error (4.62), giving

E.�i/ D 1

2

*

� �
X

i

�i ei ; � �
X

j

�j ej

+

D 1

2
h�; �i �

X

i

�i h�; eii C 1

2

X

i

X

j

�i�j
˝
ei ; ej

˛
(4.64)

where we have used

X

i

�i hei ; �i D
X

j

�j
˝
�; ej

˛ D
X

i

�i h�; eii :

If feig are orthonormal, the square error (4.64) is reduced to

E.�i / D 1

2
h�; �i �

X

i

�i h�; eii C 1

2

X

i

�2i ; (4.65)

3Sequences such as (4.56) form a basis of the function space which consists of integrable functions
whose inner product is introduced by (4.58), whereas the integral is defined in the sense of
Lebesgue but not of Riemann.
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and from (4.63) the coefficients �i can be easily obtained as

�i D h�; ei i : (4.66)

On the other hand if feig are non-orthogonal, the equation of error minimization
(4.63) can be written as

@E

@�k
D � h�; eki C

X

i

�i hei ; eki D 0 k D 1; 2; 3; � � �

Thus in order to determine the coefficients f�i g .i D 1; 2; 3; � � � /, we must solve the
following simultaneous equations:

2

6
6
6
4

he1; e1i he1; e2i � � � he1; eni
he2; e1i he2; e2i � � � he2; eni

:::
:::

:::

hen; e1i hen; e2i � � � hen; eni

3

7
7
7
5

2

6
6
6
4

�1
�2
:::

�n

3

7
7
7
5

D

2

6
6
6
4

h�; e1i
h�; e2i
:::

h�; eni

3

7
7
7
5
: (4.67)

In fact, we consider the function (4.55) and determine the coefficients �i based
on the Legendre polynomials (4.56) using the least squares method:

�i D
Z 1

0

sin�x � ei dx

D
�p

2

�
;

r
3

2

1

�
;

p
5

�
� 12

p
5

�3
;

r
7

2

�
1

�
� 15

�3

�

;

r
9

92

�
11

�
� 300

�3
C 1680

�5

�

; � � �
�

In Fig. 4.2 we show the approximation functions �h.x/ and the original function
�.x/.

For the system involving a differential equation, we can apply the same proce-
dure. For example, let us consider the following system:

�L.�/ � f D �k d
2�

dx2
� f D 0; (4.68a)

Dirichlet BC: � D N� at x D x1 (4.68b)

Neumann BC: � k
d�

dx
D Nq at x D x2 (4.68c)

Assuming that the following sequence of interpolation functions satisfy the
boundary conditions (4.68b) and (4.68c):

� ' �h D
X

˛

�˛N˛.x/ (4.69)
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Fig. 4.2 Approximation of �.x/ by the Legendre polynomials

and substituting (4.69) into the governing equation (4.68a), the residual error is
given by

" D �L.�h/ � f D �k d
2�h

dx2
� f ¤ 0:

Then the square error can be calculated as

E.�i / D 1

2
h"; "i D 1

2

Z




"2dx D 1

2

Z




��L.�h/ � f 	2 dx: (4.70)

In order to determine the coefficients �i , we minimize the square error (4.70)

@E

@�i
D 0; i D 1; 2; 3; � � � (4.71)

We can then substitute (4.69) into (4.70) and use the constraint to (4.71) to obtain
the following set of simultaneous equations:

X

j

˝
L.Ni/; L.Nj /

˛
�j C ˝

L.Nj /; f
˛ D 0; i D 1; 2; 3; � � � (4.72)

or alternatively
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2

6
6
6
6
4

hL.N1/; L.N1/i hL.N1/; L.N2/i � � � hL.N1/; L.Nn/i
hL.N2/; L.N1/i hL.N2/; L.N2/i � � � hL.N2/; L.Nn/i

:::
:::

:::

hL.Nn/; L.N1/i hL.Nn/; L.N2/i � � � hL.Nn/; L.Nn/i

3

7
7
7
7
5

2

6
6
6
6
4

�1

�2
:::

�n

3

7
7
7
7
5

D

2

6
6
6
6
4

� hL.N1/; f i
� hL.N2/; f i

:::

� hL.Nn/; f i

3

7
7
7
7
5

(4.73)

We note that (4.73) corresponds to (4.67).
In the least squares method shown above, we have directly defined the square

error (4.70), and minimized it; however we can also introduce an energy functional
such as

…. / D
Z




�
1

2
k

�
@ 

@x

�2
� f  

�

dx C Nq  .x2/ 	 1

2
a. ; / � l. /; (4.74)

a.�;  / D
Z




k
d�

dx

d 

dx
dx; l. / D

Z




f  dx � Nq  .x2/; (4.75)

and introduce an approximation

� ' �h D
X

˛

�˛N˛.x/ (4.76)

where the interpolation functions N˛.x/ satisfy only the Dirichlet boundary condi-
tion (4.68b). By substituting (4.76) into the energy functional (4.74), we obtain

…. h/ D 1

2
a.�h; �h/� l.�h/ D 1

2

X

i

X

j

�i�j a.Ni ; Nj /�
X

i

�i l.Ni/;

(4.77)

and minimize the error by

@…

@�i
D 0; i D 1; 2; 3; � � � (4.78)

This gives the equations that determine the coefficients �i . In fact, the following
simultaneous equation is obtained:

X

j

a.Ni ;Nj /�j � l.Ni/ D 0; i D 1; 2; 3; � � � (4.79)

That is,

2

6
6
6
4

a.N1;N1/ a.N1;N2/ � � � a.N1;Nn/

a.N2;N1/ a.N2;N2/ � � � a.N2;Nn/
:::

:::
:::

a.Nn;N1/ a.Nn;N2/ � � � a.Nn;Nn/

3

7
7
7
5

2

6
6
6
4

�1
�2
:::

�n

3

7
7
7
5

D

2

6
6
6
4

l.N1/

l.N2/
:::

l.Nn/

3

7
7
7
5

(4.80)
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This procedure is referred to as the Rayleigh-Ritz method, which is equivalent to
the Galerkin method.

By using the notation of (4.75) and (4.76), the weak form is given by

a.�; �/ � l.�/ D 0 8� .� D 0 on x1/ (4.81)

We substitute the approximations

� ' �h D
X

˛

�˛ N˛.x/; � ' �h D
X

ˇ

�ˇ Nˇ.x/

into (4.81), and obtain the following Galerkin approximation:

a.�h; �h/ � l.�h/ D 0 8�h .�h D 0 on x1/: (4.82)

Here �h D 0 on the Dirichlet boundary x1. For the exact solution �, we also have

a.�; �h/� l.�h/ D 0: (4.83)

By subtracting (4.83) from (4.82), we obtain

a.� � �h; �h/ D 0 (4.84)

where
e D � � �h (4.85)

represents the error between the solution � and the approximation �h. Therefore,
in the Galerkin method the error e D � � �h is orthogonal to the approximated
function �h in the sense of (4.84). In addition, since we can choose �h � �h as �h of
(4.84), we have

a.� � �h; � � �h/ D a.e C �h � �h; e C �h � �h/

D a.e; e/C a.�h � �h; �h � �h/ � 0 (4.86)

where the condition a.e; �h � �h/ D 0 (see (4.84)) and the following property of
positive definiteness of a.�; �/ are used:

a.�; �/ � 0 8� (4.87)

where k > 0. The result (4.86) shows that even if the objective function � is
not known explicitly, the Galerkin method, which uses �h D �h, gives the best
approximation since a.�h � �h; �h � �h/ D 0.



Chapter 5
Classical Theory of Diffusion and Seepage
Problems in Porous Media

In this chapter we develop the coupled diffusion and seepage problem using the
theory of mixtures. It is clearly understood that the diffusion problem is strongly
linked to the seepage problem through the mass conservation law. Adsorption on
the solid surface is treated using the concept of an ‘adsorption isotherm’.

5.1 Representative Elementary Volume and Averaging

Let us consider a volume �V , referred to as the representative elementary volume
(REV), and with�l being the size of the porous body for averaging any independent
variable within this volume. Figure 5.1 schematically shows how to decide on the
REV. If �Vv is the volume of voids in the REV, the porosity n is defined by

n D lim
�V!0

�Vv

�V
: (5.1)

Assume that the center of the REV is located at x and x0 is any arbitrary point
within the REV. The mean value of a function for this REV is defined by

f .x; t/ D 1

�V

Z

�V

f .x0; t;x/ dv.x0/ (5.2)

As shown in Fig. 5.2 the mean value f .x; t/ depends on the REV; i.e., if the
representative size l is too small, the mean value f .x; t/ represents only the material
at the center, whereas if the size l is too large (e.g., the case of an inhomogeneous
medium) the mean value converges to another limit from its original mean value
Nf .x; t/. We note that there are upper and lower limits for the representative size,

depending on the microscale geometrical properties of the material.

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 5, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 Representative
elementary volume (REV)

Fig. 5.2 REV and the mean-valued function

The deviation of a function f .x0; t;x/ from its mean value f .x; t/ is given by

ı
f .x0; t;x/ D f .x0; t;x/ � f .x; t/: (5.3)

Let g.x0; t;x/ be another dependent variable specified in dv. Since we have

f
ı
g D f

�V

Z

�V

ı
g.x0; t;x/ dv.x0/ 	 0;

ı
f g D g

�V

Z

�V

ı
f .x0; t;x/ dv.x0/ 	 0;

the mean value of f g is calculated by

f g D .f C
ı
f /.g C ı

g/ D f g C
ı
f

ı
g: (5.4)

Note that the discussions in the following sections are based on this mean value.
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5.2 Diffusion and Seepage Problem for a Multi-component
Solution in Saturated Porous Media

We treat the problem of coupled diffusion and seepage of a multi-component
solution in a saturated porous medium with a deformable porous skeleton. The
porosity is assumed to be n as defined by (5.1).

The fundamental concept of the mixture theory is given in Sects. 3.5 and 3.6
where the notation for a fluid phase are found. The important notation is reworded
to include a notation for a solid phase.

We represent a continuum body of the ˛th component of the fluid phase with
N -components as B˛ .˛ D 1; 2; � � � ; N /. The motion of a spatial point x in the
current body
�R

3 is given by x D �˛.X˛; t/ D xi ei , and the reference position
X˛ is X˛ D ��1

˛ .x; t/ D X˛K EK .
The particle velocity v˛ of a material point X˛ at time t is obtained as v˛ D

d.˛/�˛.X˛; t/=dt . We denote the material time-derivative d.˛/�=dt of a function
�.x; t/ with respect to the ˛th component as

d.˛/�

dt
D @�

@t
C v˛ � grad�: (5.5)

The deformation gradient F ˛ D F˛iK ei ˝ EK and the inverse transformation
F �1
˛ D F�1

˛Ki EK ˝ ei are given by

F ˛ D Grad�˛.X˛; t/; F �1
˛ D grad��1

˛ .x; t/: (5.6)

The time derivative of the Jacobian J˛ is calculated as

d.˛/J˛

dt
D J˛ div v˛; J˛ D j detF ˛ j (5.7)

Matric diffusion in the solid phase (see Sect. 5.2.2) can be developed using an
approach similar to that adopted to describe transport within the fluid phase. Let
B�̨ .˛ D 1; 2; � � � ; N / be a continuum region of the ˛th component of the solid
phase, and the motion of a spatial point x can be given by

x D ��̨.X �̨; t/ D x�
i ei (5.8)

X �̨ D .��̨/�1.x; t/ D X �̨
K EK: (5.9)

As with the fluid phase, several variables such as the velocity are given by

v�̨ D d.�˛/��̨.X �̨; t/
dt

ˇ
ˇ
ˇ
ˇ
X�
˛Dconstant

(5.10)
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d.�˛/�
dt

D @�

@t
C v�̨ � grad� (5.11)

F �̨ D Grad��̨.X �̨; t/; F �̨
iK D @xi

@X �̨
K

(5.12)

.F �̨/�1 D grad .��̨/�1.x; t/; .F �̨
Ki/

�1 D @X �̨
K

@xi
(5.13)

d.�˛/J �̨

dt
D J �̨ div v�̨; J �̨ D j detF �̨ j: (5.14)

5.2.1 Mass Conservation for the Fluid Phase

If we include the porosity n, the discussions of Sect. 3.6 can be directly used.
Assume that within the REV of volume �V all variables are homogeneous. If the
mass of the ˛th component of the fluid phase is denoted as n˛ , the volume fraction
(occasionally referred to as the volume molar concentration) !˛ and the component
mass density �˛ are defined by

n˛ D n!˛ �V D n
�˛

m˛

�V .Š˛/ (5.15)

wherem˛ is the molecular weight of the ˛th component.1

Let 	˛ be the mass supply of the ˛th component due to, for example, a chemical
reaction, and let �˛ be the mass that is absorbed per unit area on the surface of the
porous fabric that composes the solid phase. Then the mass conservation law of the
˛th component can be written as

d.˛/

dt

Z




n�˛ dv D
Z




n 	˛ dv �
MX

iD1

Z

�if s

�˛ ds (5.16)

whereM is the total number of solid particles that contribute to absorption.
If we apply Reynolds’ transport theorem to the l.h.s. of (5.16) under (5.7), the

local form of the mass conservation law can be obtained as

d.˛/n�˛

dt
C n�˛div v˛ D @.n�˛/

@t
C div

�
n�˛v˛

� D n	˛ � ��̨ .Š˛/ (5.17)

1The volume molar concentration !˛ given by (5.15) is frequently used in the field of gas
chemistry, whereas in continuum mechanics the concentration c˛ based on a mass-fraction is
commonly used, as defined by (5.27). See e.g., Bowen 1976.
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where ��̨ is the absorbed mass per unit volume, which is calculated from the
absorbed mass per unit area �˛. Details of the procedure are given in Note 5.1.

By summing up the total components, we have

d.n�/

dt
C n� div v D @.n�/

@t
C div

�
n�v

� D 0: (5.18)

Here we have assumed that a chemical species exchange can take place between the
fluid phase and the solid phase only through adsorption. Therefore the total mass is
balanced, giving

X

˛



n	˛ � ��̨

�
D 0 )

X

˛

n	˛ D ��; (5.19)

and we have used (5.18) when deriving (5.19). Note that the mean velocity v, the
total mass density � and the total absorbed mass �� are defined by

v D 1

�

X

˛

�˛v˛; � D
X

˛

�˛; �� D
X

˛

��̨: (5.20)

The material time derivative of a function � at a space-time .x; t/ with reference to
the mean velocity v is given by

d�

dt
D @�

@t
C v � grad�: (5.21)

The velocity gradientL, the stretch tensorD and the spin tensorW are defined as

L D grad v D D CW ; (5.22)

D D 1

2
.LCLT /; W D 1

2
.L �LT /: (5.23)

If the mean velocity v is used, (5.17) can be rewritten as

d.n�˛/

dt
C n�˛div v D �div



n�˛v˛

�
C n	˛ � ��̨ .Š˛/ (5.24)

where we have defined the diffusion velocity v˛ as

v˛ D v˛ � v: (5.25)

By eliminating v from (5.18) and (5.24), we obtain

d.n�˛/

dt
� c˛

d.n�/

dt
D �div



n�˛v˛

�
C n	˛ � ��̨ .Š˛/ (5.26)
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where c˛ is the concentration based on the mass fraction, defined by

c˛ D n�˛

n�
D �˛

�
: (5.27)

The material time derivative of c˛ with reference to v gives the following:

n�
dc˛

dt
D �d.n�/

dt
c˛ C d.n�˛/

dt
: (5.28)

Substituting (5.28) into (5.26) gives the diffusion equation as

n�
dc˛

dt
D �div



n�˛v˛

�
C n	˛ � ��̨ .Š˛/: (5.29)

From (5.27), we have the following constraint on the concentration c˛:

X

˛

c˛ D 1: (5.30)

Note 5.1 (Estimation of the volume adsorption ��̨). Let us assume that the porous
medium is microscopically periodic as shown in Fig. 5.3, and N identical micro-
cells are connected in the complete macro-domain 
0 with the internal solid/fluid
interfaces �if s . Referring to (5.17), we can rewrite (5.16) as

Z


0

ˆ.n�˛/ dv D �
NX

iD1

Z

�if s

�˛ ds; (5.31)

ˆ.n�˛/ D @.n�˛/

@t
C div

�
n�˛v˛

� � n	˛ .Š˛/: (5.32)

Fig. 5.3 Micro/macro problem and periodic boundary condition
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Fig. 5.4 Spherical absorbent
body in the micro-cell

We have assumed that in (5.32) the terms on the boundaries cancel out due to
periodicity. Let the size of the micro-cell be L", and a sphere of radius a" is
immersed in the solution (Fig. 5.4). This causes adsorption of the amount �a˛ per
unit area on the surface of this spherical absorbent body. The volume of the macro-
domain is given by V D N.L"/

3,and the surface area of one sphere is 4�a2" . If the
adsorption field is uniform, (5.31) gives

ˆ.n�˛/ V D �N4�a2" �a˛
This gives the following estimate for ��̨ as defined by (5.17):

��̨ D 4�
a2"
.L"/3

�a˛: (5.33)

�

5.2.2 Mass Conservation in the Solid Phase

We here introduce a process of diffusion and reaction in the solid phase similar to
that in the fluid phase. By drawing an analogy to the analysis of the fluid phase, we
have the following equation of mass conservation for the ˛th component:

d.�˛/
dt

Z




.1 � n/ ��̨ dv D
Z




.1 � n/ 	 �̨ dv C
MX

iD1

Z

�if s

�˛ � nds (5.34)

where 	 �̨ is the mass supply of the ˛th component in the solid phase, and ��̨ is the
component mass density of the species ˛ in the solid phase which is defined in the
REV as

n�̨ D .1 � n/ !�̨ �V D .1 � n/ �
�̨

m˛

�V .Š˛/ (5.35)

where n�̨ and !�̨ are the amount of mass and the volume fraction of the ˛th
component, respectively. Note that �˛ is the mass per unit area absorbed on the
solid particles as described in (5.16).
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The local form of (5.34) can be obtained as

d.�˛/


.1 � n/ ��̨

�

dt
C .1� n/ ��̨div v�̨ D .1 � n/ 	 �̨ C ��̨ .Š˛/ (5.36)

By summing up the total components, we have

d�


.1 � n/ ��

�

dt
C .1 � n/ ��div v� D

@


.1 � n/ ��

�

@t
C div



.1 � n/ ��v�

�
D 0

(5.37)

where v� and �� are the mean velocity and the total mass density of the solid phase
which are defined by

v� D 1

��
X

˛

��̨v�̨; �� D
X

˛

��̨: (5.38)

As in (5.19), we have a constraint

X

˛

.1 � n/ 	 �̨ D ��: (5.39)

The material time derivative of a function � with respect to the mean velocity
v�.x; t/ is given by

d��
dt

	 @�

@t
C v� � grad�: (5.40)

The velocity gradientL�, the stretch tensorD� and the spin tensor are defined by

L� D grad v� D D� CW �I D� D 1

2



L� C .L�/T

�
; W � D 1

2



L� � .L�/T

�
:

(5.41)

Adopting a procedure similar to that used in (5.29), the diffusion equation of the
˛th component in the solid phase can be derived as follows

.1 � n/ �� d�c�̨

dt
D �div



.1 � n/ ��̨v�̨�C .1 � n/ 	 �̨ C ��̨ .Š˛/; (5.42)

where

v�̨ D v�̨ � v� (5.43)

is the diffusion velocity of the ˛th component, and as given in (5.30), we have a
constraint on the concentration c�̨:

X

˛

c�̨ D 1: (5.44)
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The diffusion in the solid phase is referred to as the matric diffusion. Matric
diffusion for a fractured rock is presented by Rasilainen (1997); however, there
are always small scale fractures even in the ‘intact’ part. Pure matric diffusion is
rarely observed under normal temperature/stress/chemical states and therefore the
diffusion velocity in the solid phase can be ignored (j v�̨ j 
 1).

Using (5.25) and (5.43) we introduce the diffusion mass flux of the ˛th
component as

qm˛ D n�˛v˛ C .1 � n/��̨ v�̨ .Š˛/: (5.45)

Example 5.1 (A constituent description of bentonite clay). Bentonite consists
mainly of smectitic clay minerals such as montmorillonite and beidelite, with
macro-grains that are mainly quartz and chalcedony. The chemical formulae of
water and quartz are H2O and SiO2, respectively, and we assume that the chemical
formula of a smectitic clay mineral is Na1=3Al2[Si11=3Al1=3�O10(OH)2. Note that the
sodium ions NaC exist in an interlayer space of the clay minerals. For simplicity,
the porosity is assumed to be n D 0:5, and the composition (i.e., mass fraction) of
the solid phase is given as consisting of 50% clay minerals and 50% quartz. The
pores are assumed to be filled with pure water. The REV is a 1 cm cube.

Atomic weight of the constituent elements are as follows: Na; 22.989770,
Al; 26.981538, Si; 28.05855, O; 15.994, H; 1.00794. The molecular weights of
water, the smectitic clay mineral and quartz are thusmw D 18:015; mSm D 367:510,
mQz D 60:057, respectively.

The mass density of water is 1.00 [g/cm3], and we assume that the intrinsic
mass densities of the smectitic clay mineral and quartz are 2.70 and 2.70 [g/cm3],
respectively. Therefore, the amount of chemical substances of the water, smectitic
clay mineral and quartz in the REV are nw ' 1=36; nSm ' 9=800; nQz '
81=44; 080 [mol], respectively.

Based on the above data, the component densities of the water, clay mineral and
quartz are calculated as �w '1:00; ��

Sm '1:35; ��
Qz '1:35 [g/cm3], respectively. �

Note 5.2 (Distribution coefficient Kd and the classical diffusion equation). If the
mixture of a fluid (i.e., solution) is dilute, which is what is assumed for an ideal
solution, the adsorption can be treated as being the distribution in the solid phase,
where a distribution coefficientKd is introduced as follows:

c�̨ D Kd c˛: (5.46)

For the ideal solution Kd is assumed to be constant, and both v�̨ and v� can
be ignored. Using these assumptions and adding (5.29) and (5.42), we obtain the
classical diffusion equation as follows:

Rd
@c˛

@t
C n�v � grad c˛

D �div


n�˛v˛

�
C n	˛ C .1 � n/	 �̨ .Š˛/ (5.47)
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where Rd is the retardation coefficient which is given by

Rd D n�C .1 � n/ ��Kd : (5.48)

If we evaluate the adsorption by considering the distribution coefficientKd , the third
term on the r.h.s. of both (5.29) and (5.42) can be neglected. �

Note 5.3 (Fick’s law and the constraint). In the classical diffusion theory we
assume that the matric diffusion can be ignored, and we introduce Fick’s law for
the diffusive flux qm˛ as

qm˛ D �
X

ˇ

D˛ˇ grad cˇ (5.49)

where D˛ˇ is the diffusion coefficient, which is positive definite (i.e., �˛ D˛ˇ �ˇ >

0 8�˛). It is noted that (5.49) is an empirical formula. As implied by (5.45), we haveP
˛ �˛v˛ D P

˛ �
�̨ v�̨ D 0, therefore the following constraint must be satisfied:

X

˛

qm˛ D �
X

˛

X

ˇ

D˛ˇ grad cˇ D 0: (5.50)

�

5.2.3 Seepage Theory for the Incompressible Fluid

When we solve the diffusion problem which is given by, e.g., (5.29), we encounter
a problem that relates to the evaluation of the mean velocity v (note that dc˛=dt D
@c˛=@tCv � grad c˛). It may be possible to solve a microscale problem based on
the Navier-Stokes equation; however, in classical soil mechanics we commonly use
the seepage equation to determine v. Using the assumption of incompressibility of
a fluid, we can derive the seepage equation from (5.18) and (5.37).

Let us assume that both the mixture fluid and the intrinsic part of solid are incom-
pressible (� D constant, �� D constant). Under these incompressible conditions
and applying (5.41), we obtain alternative forms of (5.18) and (5.37) as follows:

dn

dt
C div .nv/� v � gradn D 0 (5.51)

�d�n
dt

C .1 � n/ trD� D 0 (5.52)

We substitute the relation

d�n
dt

D dn

dt
� .v � v�/ � gradn D dn

dt
� div

�
n .v � v�/

	C n div.v � v�/ (5.53)
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into (5.52), and obtain

dn

dt
D .1� n/ trD� C .v � v�/ � gradn D div

�
n .v � v�/

	 � n div v C div v�:
(5.54)

By substituting (5.54) into (5.51), we finally obtain a seepage equation that includes
the volumetric deformation of the solid phase trD� as follows:

trD� C div Qv D 0 (5.55)

dn

dt
D �n div v (5.56)

where .v�v�/ is the intrinsic fluid velocity, and

Qv D n .v � v�/ (5.57)

is referred to as the seepage velocity or Darcy’s velocity of a pore fluid, to which we
apply Darcy’s law given by

Qv D �k grad�; � D p

�g
C � (5.58)

Using an equation of equilibrium or motion, which determines the deformation
of the solid skeleton, and (5.58), a system of differential equations for specifying
the mean velocity v (i.e., the conventional consolidation problem) is achieved.
Note that in (5.58) � is the reduced Bernoulli potential (i.e., the total head
excluding the velocity potential), k is the hydraulic conductivity tensor, p is the
pore pressure of the fluid, g is the gravity constant, and � is the datum potential.
Thus by starting with the mass conservation laws for both fluid and solid phases,
we can simultaneously obtain the diffusion equation and the seepage equation
which includes a term that accounts for the volumetric deformation of the porous
skeleton.

Note 5.4 (On the permeability and flow in a porous medium). The seepage equation
can be obtained by substituting Darcy’s law into the mass conservation equations
of fluid and solid phases, as described above. The effects of the micro-structure
and microscale material property are put into the hydraulic conductivity k, which
is fundamentally specified through experiments. It is not possible to specify the
true velocity field by this theory, whereas by applying a homogenization technique,
we can determine the velocity field that will be affected by the microscale
characteristics. In Chap. 8 we will outline the homogenization theory, which is
applied to the problem of water flow in a porous medium, where the microscale
flow field is specified.
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A

L

Δh

Sample

Fig. 5.5 Schematic diagram
of the constant head
permeability test

Let us assume that a porous medium is isotropic (kij D k ıij ). We briefly
describe a method to determine the hydraulic conductivity k through an experiment.
Figure 5.5 shows the schematic diagram of a constant head permeability test, in
which the flow rate Q is measured as a volume per unit time. If the differential
head is fixed as �h, and the cross section and length of the specimen are A and L,
respectively, the hydraulic conductivity k is calculated as

Q D k A
�h

L
(5.59)

Note that the hydraulic gradient is i D �h=L.
The hydraulic conductivity k is strongly affected by the viscosity � of the fluid,

therefore we can introduce the following permeability coefficient k�:

k D k� �g
�

D k� g
�


(5.60)

where �
 D �=� is the kinematic viscosity.
Let M, L and T be the scales of mass, length and time. We denote the dimensions

of the above variables together with the pore pressure p as follows:

ŒQ� D L3=T Œh� D L Œk� D L=T

Œk�� D L2 Œ�� D M=LT Œ�
� D L2=T2 (5.61)

Œ�� D M=L3 Œg� D L=T2 Œp� D M=LT2

The dimensions are given in the MKS units as ŒQ� Dm3=s, Œh� Dm, Œk� Dm/s,
Œk��Dm2, Œ��DPa s, Œ�
�Dm2/s2, Œ��DMg/m3, Œg�Dm/s2, Œp�DPa �
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5.2.4 Seepage Theory for the Compressible Fluid

We assume that the fluid mixture is compressible (� ¤ constant) and the intrinsic
part of the solid is incompressible (��D constant). Then (5.18) reduces to

d.n�/

dt
C div

�
n�v

� � v � grad .n�/ D 0: (5.62)

By substituting (5.53) into (5.52), we obtain (5.54), which, when substituted into
(5.62), gives the following seepage equations for a compressible fluid:

n
d.ln �/

dt
C trD� C div Qv D 0 (5.63)

dn

dt
D �n

�
d.ln �/

dt
C div v

�

(5.64)

where Qv D n .v � v�). Let �0 and K be a reference density and the volumetric
elastic constant, respectively, and a constitutive law for the compressible fluid can
be written as

p D K ln

�
�

�0

�

) dp

dt
D K

d.ln �/

dt
: (5.65)

Then (5.63) and (5.64) are rewritten as follows:

n

K

dp

dt
C trD� C div Qv D 0 (5.66)

dn

dt
D �n

�
1

K

dp

dt
C div v

�

(5.67)

It is clear that Darcy’s law (5.58) can be applied to (5.66).

5.3 Navier-Stokes Equation and the Classical Permeability
Theory

The true velocity v of a fluid mixture flowing in a porous medium is a function not
only of the porosity n but also of several other factors, including the particle size
and surface conditions due to the viscous properties of the fluid. In this Section we
assume that the problem has a simplified geometry in order to solve the problems of
viscous flow and discuss the permeability characteristics.
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5.3.1 Pipe Flow: Hagen-Poiseulle Flow

Assume that a fluid of mass density � flows through a pipe of diameter d D 2a (a
is the radius) as shown in Fig. 5.6 (Hagen-Poiseulle flow). When the velocity field
is one-dimensional, the differential equation governing the pipe flow problem along
with the boundary conditions (BC) is given in cylindrical polar coordinates .r; z/ as
follows:

1

r

d

dr

�

r
dvz

dr

�

D 1

�

dp

d z
; (5.68)

BC W vz D 0 at r D a; (5.69)

vz D Vmax < 1 at r D 0 (5.70)

where vz is the velocity in the z-direction, p is the pressure (dp=d z is the pressure
gradient), and � is the dynamic shear viscosity.

The solution of the ordinary differential equation (5.68) is

vz D 1

4�

dp

d z



a2 � r2

�
(5.71)

and the mass flux q through the pipe is given by

q D
Z a

0

� vz � 2�r dr D �dp
d z

�a4

8�

(5.72)

where �
 D �=� is the kinematic viscosity.2 The mean velocity Nv and maximum
velocity Vmax are calculated as

Nv D 1

�a2

Z a

0

vz � 2�r dr D �dp
d z

a2

8�
; Vmax D vz.r D 0/ D 2 Nv: (5.73)

Let L be the length of the pipe, and the pressure loss be �p. Then we have
�dp=d z'�p=L, and using (5.73)1

�p D �32�NvL
d2

: (5.74)

Since the Reynolds’ number (cf. Sect. 5.6) for the flow through the pipe is

2In most textbooks, the shearing kinematic viscosity is denoted as �, whereas we employ the
notation �
 and �
 for shearing and volumetric kinematic viscosities, respectively, since we
consider the fluid to be compressible.
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Fig. 5.6 Hagen-Poiseulle
flow

Re D Nv d
�

; (5.75)

the drag coefficient CD for the flow in this pipe, with an inner diameter d D 2a, is
given by

CD D Pressure loss

Kinetic energy of the inflow
D �d � dp=d z

�Nv2=2 D 64

Re
(5.76)

where (5.73) and (5.75) are used.
The shear stress �w on the pipe wall is calculated by considering the equilibrium

for pressure loss as

�a2�p D 2�aL�w ) �w D d

4

�p

L
; (5.77)

and the friction factor f caused by the shear stress is

f D Shear stress at the wall

Kinetic energy of the inflow
D �w

�Nv2=2 D d

2�Nv2
�p

L
: (5.78)

This f is known as Fanning’s friction factor. Using this f , the frictional energy loss
Ff for flow in a pipe of length L is given by

Ff D 4f

�
L

d

�� Nv2
2

�

D 2fLNv2
d

: (5.79)

This is referred to as Fanning’s formula. The unit of measurement for Ff is [J/kg].
The pressure loss due to friction�Pf is then given by

�Pf D � Ff D 2�fLNv2
d

(5.80)

where�Pf is given in [Pa]. Using (5.76)–(5.78) we can see that the drag coefficient
CD is related to the friction factor f by

CD D 4 f: (5.81)
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In terms of the frictional energy loss we define Darcy’s friction factor � by

� D 4f: (5.82)

5.3.2 Flow Through an Assembly of Pipes and Its
‘Permeability’

Consider the viscous flow through an assembly of pipes with an overall square
cross section of side length D and an overall longitudinal length L (Fig. 5.7).
The diameter of a single pipe is d , and for simplicity we ignore the thickness
of the pipe wall. The boundary surface of each pipe is impervious. It should be
noted that the porosity n D 1��=4 of the section is the same for any size of
pipes.

If the number of pipes is N D .D=d/2, and a flux through one pipe is given by
(5.72), the total flux through this pipe assembly is

Q D q �N D �dp
d z

�a4

8�

N D �dp

d z

�

128�


�
dD

�2
: (5.83)

From the above equation a ‘hydraulic conductivity’ k of this system can be
defined as

k D �D2

128�


�
d

D

�2
(5.84)

As we can see, the ‘hydraulic conductivity’ is proportional to the square of the
ratio d=D. That is, if the pipe diameter becomes one tenth under the same D,
the ‘hydraulic conductivity’ becomes one hundredth, since, as understood from
(5.71) or (5.73), the velocity is restricted by the viscosity and is proportional
to d 2. Figure 5.8 schematically shows the velocity profiles for the case when
the pipe diameter becomes one half, then the maximum velocity becomes one
fourth.

Fig. 5.7 Assembly of pipes
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a bFig. 5.8 Relationship
between the pipe radius and
the flow velocity

5.3.3 Flow in a Tank Filled with Solid Particles and Its
Permeability

Consider the ‘seepage flow’ problem in a tank that is filled with solid particles as
shown in Fig. 5.9. The total volume of this tank is V and the volume of the voids is
Vv, so that the porosity is n D Vv=V . The mass flow velocity V D Q=� is given by
the flux Q. The total surface area of solid particles is Sp , and the surface area per
unit volume of one particle is sv (if the particle is a sphere of diameter dp D 2rp,
sv D 4�r2p=.4�r

3
p=3/ D 6=dp). Then the surface area per unit volume Sv of the

total solid particles is calculated as Sv D sv.1�n/.
Since there is no known analytical solution to this problem, we simplify the

problem by introducing a virtual pathway in the porous medium (Fig. 5.9). The
length of the virtual path is Le , and its longitudinal projection is Lp . The fluid
flow passes around each particle, so the wet path length is lp D 2�rp and the
sectional area of flow is sp D �r2p . Thus a diameter de of the virtual pathway can
be determined by

sp

lp
D de

4
: (5.85)

This de can also be formulated as

de D 4
sp

lp
D 4

Vv

Sp
D 4

V n

V sv
D 4 n

Sv.1 � n/
: (5.86)

The velocity Nve of fluid in the virtual pathway is

Le

Nve D Lp

V =n
) Nve D V

n

Le

Lp
: (5.87)

Applying the Hagen-Poiseulle flow (5.74) yields

�p

Le
D 32�Nve

d 2e
D �

.1 � n/2

n3
�S2v V ; � D 32

Le

L2p
(5.88)
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Fig. 5.9 Flow in a tank filled
with solid particles

This is known as the Kozeny-Carman formula, and the Kozeny constant � has
been experimentally estimated as � ' 5. The Kozeny-Carman formula can be
simplified to

V D �k
�

�

�p

Le
(5.89)

which is known as Darcy’s formula in which there is no explicitly observed effect
of the particle diameter and the permeability k� is just an experimental constant. It
should be noted that in the Kozeny-Carman formula the effect of the particle size is
given by Sv D 6.1�n/=dp, so its square effect is explicitly estimated.

5.4 Fick’s Law and Evaluation of the Diffusion Coefficient

We suppose that the driving force for the mass flux qm˛ , which is introduced by
(5.45), is a gradient of the chemical potential. Thus the constitutive law for qm˛ is
given by the gradient of the chemical potential (cf. Appendix E.6 and E.7). For
example, for a mixture of two elements without intermolecular forces, given by
(E.85) and (E.86), we have

qm1 D �D grad c1; D D D0

�

1C @ ln 	1
@ ln c1

�

(5.90)

where D0 is a constant, and 	1 is the activity coefficient of species 1. In the
electrolyte solution given by (E.119) and (E.120) we have

qmA D �DAgrad cA; DA D uCu�
uCzC � u�z�

cA
@�A

@cA
.ŠA/: (5.91)

In the following discussion in this Section we treat the phenomenological Fick’s
law in terms of practical engineering aspects.
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In classical diffusion theory, the diffusing mass flux qm˛ is treated as the sum of
molecular diffusion, pressure diffusion, thermal diffusion by the Soret effect, and so
on, whereas the physical background of these effects are not completely discussed.

Let n be the ‘effective’ porosity, which directly affects the diffusion. Since
isotropic diffusion is considered (D˛ˇ

ij D D˛ˇıij ), the flux of molecular diffusion
for the ˛th component can be given according to the following form of Fick’s law:

qm˛i D ��n
n�
X

ˇD1
De
˛ˇ

@cˇ

@xi
(5.92)

where � is the mean density of the solution, and De
˛ˇ is the effective diffusion

coefficient, which is related to the molecular diffusion coefficientD˛ˇ by

De
˛ˇ D ı

�
D˛ˇ; (5.93)

and � .>1/ is the tortuosity; this is related to the minimum diffusion path of length
l and the effective path length le by

� D
�
le

l

�2
> 1 (5.94)

and ı .
 1/ is the constrictivity, which accounts for the effect of fine pores with a
mean diameter dp, comparable to the diameter of the solute molecules dm. Then, let
�p be

�p D dm

dp
< 1 (5.95)

and the empirical constrictivity can be experimentally derived as

ı D .1 � �p/
2.1 � 2:104�p C 2:09�3p � 0:95�5p/

ı D .1 � �p/
4

ı D exp.�4:6�p/
ı D 1:03 exp.�4:5�p/

By combining both coefficients of (5.92) and (5.93), we obtain the formation
factor as

F D n
ı

�

This formation factor is related to the microscale geometry of the REV.
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Let D˛
0 be the diffusion coefficient of the ˛th component in pure water, and

assume that the interactions between the ˛th and ˇth components are equivalent;
therefore we have

D˛ˇ D ˛�D˛
0 ı˛ˇ .Š˛/

where ˛� is the solute coefficient. Then Fick’s law (5.92) is given as

qm˛i D ��De.c˛/
@c˛

@xi
D ��nDe�.c˛/

@c˛

@xi
(5.96)

De.c˛/ D nDe�.c˛/ D ˛�FD˛
0 D ˛�n

ı

�
D˛
0 .Š˛/: (5.97)

Next, suppose that the effect of mechanical dispersion, as shown in Fig. 5.10,
accounts for the locally dispersing phenomenon due to the solid particles. We
consider the mean values and deviations of the velocity v and the concentration c˛

c˛ v D c˛ v C ı
c˛

ı
v (5.98)

(c˛
ı
v D v

ı
c˛ D 0). From the second term of the r.h.s. we can define the dispersive

mass flux as

qM˛ D ı
c˛

ı
v (5.99)

Using this dispersive mass flux qM˛ , a working hypothesis of Fick’s law is
introduced:

qM˛ i D ��DMe
ij .c˛/

@c˛

@xj
D ��nDMe�

ij .c˛/
@c˛

@xj
(5.100)

DMe
ij .c˛/ D nDMe�

ij .c˛/ (5.101)

Fig. 5.10 Mechanical
dispersion
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where the anisotropic property is invoked because of the characteristics of dispersive
flux. Based on experimental observations,DMe

ij .c˛/ is considered as

DMe
ij .c˛/ D

n
aT v ıij C .aL � aT /

vivj
v

o
f .Pe; ı; c˛/ (5.102)

where aT and aL are, respectively, the lateral and transverse dispersion coefficients,
v D j v j, Pe is the Peclèt number and ı is the constrictivity (Bear and Verruijt 1987).
The function f .Pe; ı; c˛/ is proposed as

f .Pe; ı; c˛/ D Pe

.Pe C 2C 4ı2/

(Bear and Bachmat 1990). However, usually this is set conveniently as

f .Pe; ı; c˛/ ' 1:

The flux q˛ that combines both the molecular diffusion and mechanical disper-
sion can be written as

q˛ i 	 qm˛ i C qM˛ i D ��eDe
ij .c

˛/
@c˛

@xj
D ��neDe�

ij .c
˛/
@c˛

@xj
(5.103)

eDe
ij .c

˛/ D De.c˛/ıij CDMe
ij .c˛/; eDe�

ij .c
˛/ D De�ıij .c˛/CDMe�

ij .c˛/:

(5.104)

5.5 Adsorption Isotherm and the Distribution Coefficient

Adsorption in a porous medium is processed by the segregation of some species
(i.e., adsorbate) from the solution and subsequent precipitation on the surface
of the solid (i.e., adsorbent). Adsorption is classified by physical adsorption or
physisorption caused by an electrostatic force (i.e., Coulomb force) and a van der
Waals force, while chemisorption is caused by surface reactions (Moore 1972).
Adsorption of N2 gas by SiO2 is a physisorption. Adsorption of O2 by activated
charcoal, and adsorption of H2 gas for metallic Ni are chemisorption. We need to
heat the adsorbent under high pressure in order to remove the chemisorbed material;
however, frequently, this resultant material is different from the originally adsorbed
one. In physisorption several layers of adsorbed molecules may be formed, while
in chemisorption only a monolayer is formed. Occasionally after chemisorption
other physisorption processes may occur. The energy of physisorption ranges from
300 to 3,000 J/mol, while the energy required for chemisorption ranges from 40 to
400 KJ/mol. The conditions of temperature, hydrogen-ion exponent pH and redox
potential Eh strongly affect the adsorption phenomena.
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Note 5.5 (Adsorption, absorption and sorption). The process where a concentration
of molecules or ions at an interface between a solid and a fluid becomes incorporated
within the solid is referred to as adsorption. Note that at the interface of an
electrolyte aqueous solution and a solid, the concentration may become dilute. We
refer to this as a negative adsorption. When the adsorbed molecules or ions on
the surface can be detached due to changes in the chemical conditions, desorption
occurs.

On a solid-gas interface, we may observe that the gas molecules diffuse into
the inner part of the solid. This is referred to as absorption. If both adsorption and
absorption take place simultaneously, this process is referred to as sorption. �

Note 5.6 (Van der Waals force). Even for nonpolar molecules, the polar character
is generated due to instantaneous deviations in the electron orbit. Because of this
electric field, the neighboring molecules become polarized, and the energy level
of the total system becomes lower if the force is attractive rather than repulsive.
Frozen carbon dioxide and crystals of iodine I2 are examples of crystals formed
by van der Waals forces, which are known as molecular crystals. Since the van
der Waals forces have no orientation, the molecular crystals occur in a closely-
packed structure. The van der Waals force V.r/ is inversely proportional to the sixth
power of the intermolecular distance r : V.r/ D �C=r6. The van der Waals force is
extremely small compared to chemical forces such as ionic bonds, covalent bonds
and metallic bonds (i.e., less than 1/100). �

Adsorption can be classified into two types; (1) the equilibrium adsorption isotherm
in which the reaction process is in equilibrium, and (2) the nonequilibrium
adsorption isotherm in which the reaction rate is important. Since classical thermo-
dynamics treats only the equilibrium state, the nonequilibrium adsorption isotherm
is commonly described in a phenomenological sense (cf. Appendices E.8 and E.9).

Here we list some examples of the equilibrium and nonequilibrium adsorption
isotherms. Let the current area of an adsorbed layer be S , and let the final area of
the layer after completion of the reaction be S1. Then the fractional coverage � is
expressed as

� D S

S1
: (5.105)

5.5.1 Langmuir’s Equilibrium Adsorption Isotherm

Gas adsorption for a solid was first formulated quantitatively by Langmuir (1916,
1918). The model assumes the following conditions:

1. Adsorption proceeds with monolayer coverage.
2. On a perfectly flat surface there are N -sites for adsorption; these are uniformly

distributed on the surface, and are mutually equivalent.
3. A molecule adsorbed at a site does not affect the adsorption properties of

neighboring sites.
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Let ka and kd be, respectively, the adsorption and desorption rates of the species
˛ in a gas under the partial pressure P˛ . Following the reaction theory given in
Appendices E.8 and E.9, the equilibrium reaction of adsorption and desorption can
be written as

� d.1 � �/

dt
D d�

dt
D kaP˛N.1 � �/ � kdN� D 0: (5.106)

Then we have

� D kaP˛

kd C kaP˛
D b˛ P˛

1C b˛ P˛
.Š˛/ (5.107)

where

b˛ D ka

kd
(5.108)

is the adsorption coefficient for the species ˛.
If we plot the fractional coverage � against the partial pressure P˛ , we obtain a

hyperbolae. Equation 5.107 can be written in the alternative form as

1

�
D 1C 1

b˛ P˛
.Š˛/; (5.109)

where a plot of 1=� v.s. 1=P˛ is linear and referred to as the Langmuir plot, which
can be used to determine b˛.

In (5.107) if b˛ P˛ 
 1I .Š˛/, i.e., the partial pressure is small enough or the
fractional coverage is small enough, we have

� D b˛ P˛ .Š˛/: (5.110)

This is known as the linear adsorption isotherm. On the other hand if
b˛ P˛�1I .Š˛/, i.e., under high pressure or highly adsorbable, we have

1 � � D 1

b˛ P˛
.Š˛/: (5.111)

In a perfect gas and in a dilute solution, the concentration c˛ is proportional to
the partial pressure P˛ , so that, for the case of a dilute solution that flows in a porous
medium, (5.107) becomes

c�̨ D b˛ c˛

1C b˛ c˛
.Š˛/ (5.112)

where c�̨ and c˛ are, respectively, the concentrations of a species ˛ in the solid and
in the solution. For the case of b˛ c˛
1I .Š˛/, the equilibrium adsorption isotherm
(5.112) is given by

c�̨ D Kd
˛ c˛ .Š˛/ (5.113)

whereKd
˛ .Db˛/ is referred to as the distribution coefficient as described in (5.46).
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We sometimes use an alternative form of (5.113)

c�̨ D k1 c˛ C k2 (5.114)

where k1 and k2 are constants. This gives a nonlinear adsorption isotherm.
For practical solutions the activity a˛ defined by (E.74) is used instead of the

concentration c˛ . Then (5.112) and (5.113) can be rewritten as

c�̨ D b˛ a˛

1C b˛ ; a˛
.Š˛/; (5.115)

c�̨ D Kd
˛ a˛ .Š˛/: (5.116)

Note that in the following discussions of the Freundlich and Temkin isotherms, a
similar procedure can be applied by using the activity of practical solutions.

The coefficient b˛ of (5.112) and (5.115) represents the equilibrium constant of
adsorption/desorption as shown by (5.108). Then, by applying (E.141), we have the
following interpretation:

b˛ D B˛ e
�.�H�/˛=RT ; B˛ D e.�S

e/
�
˛ =R: (5.117)

We can outline the procedure used to solve the diffusion problem under the
Langmuir equilibrium adsorption isotherm. A diffusion field in the solution (5.29)
together with Fick’s law gives

n�
dc˛

dt
C r � q˛ D n	˛; (5.118)

q˛ D �k˛ r c˛ .Š˛/ (5.119)

where the adsorption term ��̨ is ignored since it is evaluated in the adsorption
isotherm, q˛ is the mass flux of the species ˛ in the solution, and k˛ is a diffusion
coefficient of species ˛ in the solution. On the other hand, the diffusion field in the
solid is given by (5.42) together with Fick’s law:

.1 � n/�� d�c�̨

dt
C r � q�̨ D .1 � n/	 �̨; (5.120)

q�̨ D �k�̨ r c�̨ .Š˛/: (5.121)

Note that even if the adsorption reaction is in equilibrium, the diffusion field is
time-dependent. Here q �̨ is the mass flux of the species ˛ in the solid, and k�̨ is
a diffusion coefficient of a species ˛ in the solid. Differentiating (5.112) of the
Langmuir equilibrium adsorption isotherm with respect to time gives

@c�̨

@t
D Kd

˛

@c˛

@t
; r c�̨ D Kd

˛ r c˛; Kd
˛ D b˛

.1C b˛ c˛/2
.Š˛/:

(5.122)
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Substituting these into (5.120) and (5.121) and summing with (5.118) yields the
following diffusion equation in terms of the concentration c˛ of the solution:

n�Rd˛
@c˛

@t
C
h
n�v˛ C .1 � n/��Kd

˛ v�̨i � r c˛ � r �


ek˛ r c˛

�
De	˛ .Š˛/;

(5.123)

Rd˛ D 1C .1 � n/��

n�
Kd
˛ ;

ek˛ D k˛ C k�̨Kd
˛ ; e	˛ D n	˛ C .1 � n/	 �̨ .Š˛/:

(5.124)

Since the diffusion velocity in the solid is usually slow, we have ek˛ ' k˛ . The
particle velocity v�̨ is also slow. Therefore (5.123) can be approximated by the result

n�

�

Rd˛
@c˛

@t
C v˛ � r c˛

�

� r �


k˛ r c˛

�
De	˛ .Š˛/: (5.125)

5.5.2 Freundlich’s Equilibrium Adsorption Isotherm

On the surface of a crystal, defects related to dislocation of the crystal structure
are commonly observed. On these nonuniform surfaces a formulation adopted by
Freundlich (1926) fits with experimental data: i.e.,

� D k.P˛/
1=m (5.126)

which gives a nonlinear equilibrium adsorption isotherm. Here k is constant and m
is also a constant greater than unity.

Equation 5.126 can be rewritten in terms of the concentrations c�̨ and c˛ as

c�̨ D k˛ .c˛/
1=m˛ .Š˛/: (5.127)

5.5.3 Temkin’s Equilibrium Adsorption Isotherm

Temkin’s equilibrium isotherm corresponds to a logarithmic form of a nonlinear
adsorption isotherm given by

� D c1 ln.c2P˛/ (5.128)

where c1 and c2 are constants. In this case, the enthalpy of adsorption is known to
be linear with respect to the partial pressure P˛ .
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Equation 5.128 can be rewritten in terms of the concentrations c�̨ and c˛ as
follows:

c�̨ D c1˛ ln.c2˛c˛/ .Š˛/: (5.129)

5.5.4 Langmuir’s Nonequilibrium Adsorption Isotherm

For the case of nonequilibrium adsorption where the rate of reaction cannot be
ignored, Langmuir’s nonequilibrium adsorption isotherm corresponding to (5.112)
is given by

@c�̨

@t
D k˛

�
b˛ c˛

1C b˛ c˛
� c�̨

�

.Š˛/ (5.130)

where k˛ and b˛ are constants (Hendricks 1972). If b˛ c˛ �; .Š˛/, it reduces to a
linear form of the nonequilibrium adsorption isotherm

@c�̨

@t
C k˛ c

�̨ D 0 .Š˛/ (5.131)

where k˛ is a constant. Thus, (5.114) can be rewritten as

@c�̨

@t
D k˛ .k1˛ c˛ C k2˛ � c�̨/ (5.132)

where k, k˛; k1˛; k2˛ are constants (Lapidus and Amundson 1952).

5.5.5 Freundlich’s Nonequilibrium Adsorption Isotherm

A nonequilibrium adsorption isotherm corresponding to (5.127) is given by

@c�̨

@t
D k˛

�

k1˛ .c˛/
1=m˛ � c�̨

�

(5.133)

where k˛; k1˛; m˛ are constants.

5.6 Transport Equations and Similitude Laws

The Navier-Stokes equation (2.238) for an incompressible Newtonian viscous fluid
can be written as

@v
@t

C rv � v D �1
�

rp C �
�v C b (5.134)
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r � v D 0 (5.135)

where � D r � r is the Laplacian. The diffusion equation (5.125) together with
Fick’s law is given by

Rd
@c

@t
C rc � v D D�c; D D kD

n�
(5.136)

where kD is the diffusion coefficient. The thermal conduction equation together with
Fourier’s law is given by

@T

@t
C rT � v D ˛�T; ˛ D kT

Cv
(5.137)

where kT is the thermal conductivity. We will discuss similitude laws for these
transport equations.

Let � , L and V be the standard time, length and velocity, respectively, then the
normalized time, length and velocity are given by

t� D t

�
; x� D x

L
; v� D v

V
(5.138)

Note that in most cases we can set � D L=V . Using the above definitions of
time-space normalization we can introduce the following normalized pressure p�,
concentration c� and temperature T �:

p � p0 D � V 2 p�; c � c0 D .c0 � Nc/ c�; T � T0 D .T0 � T / T �: (5.139)

where p0; c0; T0 are the initial values for the pressure, concentration and tempera-
ture, respectively, and Nc; T are boundary values of concentration and temperature.

Substituting (5.138) and (5.139) into (5.134)–(5.137), we obtain the normalized
transport equations as3

St
@v�

@t�
C r�v� � v� D �r�p� C 1

Re
��v� C 1

Fr

b

�g
; (5.140)

r� � v� D 0; (5.141)

StD
@c�

@t�
C r�c� � v� D 1

PeD
��c�; (5.142)

3Note that under the base vectors fe�
i g differential operators in the normalized space are defined by

grad� D r � D e�
i

@

@x�
i

; div� D r ��; �� D r � � r �
:
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St
@T �

@t�
C r�T � � v� D 1

PeT
��T � (5.143)

where g is the gravitational acceleration, St is the Strouhal number, Re is the
Reynolds number, Fr is the Froude number, StD is the Strouhal number for
diffusion, PeD is the Péclet number for diffusion and PeT is the Péclet number for
temperature. Note that we have the following physical interpretations:

St D L=V

�
D time scale for flow

time scale for unsteady flow
; (5.144)

Re D V 2=L

�
V=L2
D VL

�

D inertia force

viscous force
; (5.145)

Fr D � V 2=L

�g
D inertia force

gravitational force
; (5.146)

StD D RdL=V

�
D flow time scale including absorption

unsteady time scale
; (5.147)

PeD D VL

D
D mass transport by convection

mass transport by diffusion
; (5.148)

PeT D VL

˛
D heat transport by convection

heat transport by diffusion
: (5.149)



Chapter 6
Classical Theory of Consolidation for Saturated
Porous Media

Soil is a mixture of a solid phase, a liquid phase (i.e., water) and a gaseous phase.
Saturated soil is a two-phase material which consists of a solid phase and a liquid
phase. The formulation of a theory for a saturated soil commenced with the concept
of the effective stress of Terzaghi at the beginning of the twentieth century, and
Terzaghi’s concept was extended by Biot to a three dimensional consolidation
theory.

In this Chapter, we review the classical theory of consolidation for saturated soils
under the assumption that both the intrinsic part of the solid phase and the fluid
are incompressible, and that the deformation of the soil results from a nonlinear
deformation characteristic of the skeleton and the seepage of fluid.

6.1 Mass Conservation Law and Seepage Equation

As described in Sect. 5.2, the fluid flow problem in a porous medium is given by a
seepage equation, which we again show here together with Darcy’s law, assuming
that the intrinsic solid particles and fluid are incompressible. Note that we will not
consider diffusive processes.

A mass conservation law for water together with the incompressibility condition
results in the following seepage equation:

trD� C div Qv D 0 (6.1)

where Qv is the seepage velocity which is defined by (see (5.55))

Qv D n .v � v�/: (6.2)

The driving force associated with the seepage velocity Qv is the reduced Bernoulli
potential, which consists of the pressure head and the datum head �; thus Darcy’s
law takes the form

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 6, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 Reference levels

Qv D �k grad�; � D p

�g
C � (6.3)

where � is the mass density of water, k is the hydraulic conductivity tensor, g is
the gravity constant, � is the total potential, and p is the pore pressure. The datum
potential is measured from a reference level H ; for a two-dimensional problem as
shown in Fig. 6.1a and for a three-dimensional problem as shown in Fig. 6.1b, we
have, respectively

� D y �H; � D z �H: (6.4)

Note that in conventional geotechnical engineering problems, the pore fluid is water
and the influence of temperature is neglected. If the soil is considered to be isotropic,
the second order tensor k reduces to kD k i where i is the unit tensor of the
coordinate system of the current configuration, and k is referred to as the hydraulic
conductivity.

By substituting (6.2) and (6.3) into the mass conservation equation (6.1), and
considering the incompressibility of water (� D constant), we have the following
seepage equation, which includes the effect of the volume change of the skeleton
d"v=dt D trD�:

d"v

dt
C r � .kr�/ D 0: (6.5)

6.2 Conservation of Linear Momentum, Effective Stress and
Biot’s Consolidation Theory

The conservation law of linear momentum for a saturated porous medium can be
written as
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d

dt

Z




n�v dv C d

dt

Z




.1 � n/��v� dv D
Z




.r � � C N�b/dv (6.6)

where �� is the mass density of the solid phase, v� is the particle velocity of the
solid phase, � is the total stress, and b is the body force vector, which is given
as b D .0; 0;�g/ if the z-axis is directed away from the ground surface (g is the
gravitational constant). Note that the mean mass density N� is calculated as

N� D n �C .1 � n/ ��: (6.7)

We introduce Terzaghi’s effective stress by

� D � 0 � pi : (6.8)

Then, (6.6) is written as

�
d.nv/
dt

C �� d.1 � n/v�

dt
D r � � 0 � rp C N�b (6.9)

where � 0 is the effective stress, which acts in the solid skeleton, and p is the pore
fluid pressure. We introduce the lower-case p in order to distinguish it from the
pore fluid pressure for the current configuration in a finite strain theory as shown in
Sect. 6.3. It should be noted that � and � 0 are positive for tension, and p is positive
for compression.

For static problems (i.e., in the absence of inertia terms), (6.9) is written as

r � � 0 � rp C N�b D 0: (6.10)

This is combined with the seepage equation (6.5), giving Biot’s consolidation
equation.

The pore pressure p is usually set as the hydrostatic pressure p0 plus the excess
pore pressure dp. Then, the effective stress is written in an incremental form as

� C d� D � 0 C d� 0 � .p0 C dp/i ) P� D P� 0 � Ppi : (6.11)

The equation of equilibrium (6.10) is then given as

r � P� 0 � r Pp D 0: (6.12)

6.3 Finite Strain Theory of Consolidation |

In this section we reconstruct the theory of consolidation by introducing the concept
of a finite strain and a nominal stress rate, which are given in Chap. 2. Note that
in Chap. 5 a mixture theory was developed for a porous medium with multiple
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chemical species, while in this chapter we will only discuss a complete fluid phase
and solid phase in which the behavior of each species is not considered. We can
therefore introduce the seepage equations as shown in Sects. 5.2.3 and 5.2.4. That
is, in the mixture theory for a porous medium we introduce, e.g., for a fluid phase,
a particle velocity v˛ and a deformation gradient F ˛ for each species, and define
the mass-averaged velocity v D P

˛ �˛v˛=�, which gives the velocity gradient L,
the stretching D and the spin tensor W , therefore we cannot introduce a reference
configuration and a deformation gradient for the whole fluid phase. In this section
we examine the entire fluid phase and solid phase without discussing the behavior
of individual chemical species. In this case the reference configuration is given for
the solid phase, since it is possible to measure the deformation of the solid phase.
Then we can introduce a finite strain theory of consolidation for a porous medium.

6.3.1 Seepage Equation of Consolidation in a Lagrangian
Form

By introducing the reference configuration for the entire solid phase, we define the
basis EK for the reference configuration, and the reference point is given by X� D
X�
K EK . For the current configuration the basis is ei , and the current point of the

solid phase is given by x D xi ei (which is the same as the current point of the fluid
phase). A deformation gradient of the solid phase is F �. Then we have

F � D Grad� x D @xi

@X�
K

ei ˝EK; Grad� D EK

@

@X�
K

; J � D detF �: (6.13)

As shown by (6.3), Darcy’s law for the current configuration is given for the
seepage velocity Qv as

Qv D �k



gradp � �b
�
; grad D ei

@

@xi
(6.14)

where � D P
˛ �˛ is the total mass density of the fluid phase defined by (5.20)2, k

is the hydraulic conductivity tensor for the current configuration, b is the body force
vector, which is b D .0; 0; �g/ if gravity is working in �x3-direction.

A surface element ds for the current configuration is related to the surface
element dS for the reference configuration of the solid phase by Nanson’s formula
(2.86) as

nds D J �.F �/�TN dS: (6.15)

Note that the mass density of the fluid phase is � for the current configuration, and
we introduce the mass density of the fluid phase for the reference configuration as
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�
�
0 D � J �: (6.16)

The seepage velocity Qv for the current configuration is related to the seepage velocity
QV for the reference configuration as

Qv � nds D QV �N dS: (6.17)

We substitute (6.17) into (6.15), and obtain

QV D J �.F �/�1 Qv D �K



Grad�P � ��0 b0
�
; (6.18)

K D J �.F �/�1k .F �/�T ; Grad�P D .F �/T gradp; b0 D .J �/�1.F �/T b
(6.19)

where K is the hydraulic conductivity tensor for the reference configuration, P is
the nominal pore pressure, which is written as

P D J � @X�
K

@xi
ıiK p D J �tr .F �

I/�1p; I D ıKi EK ˝ ei: (6.20)

If i D ıij ei˝ej is the identity tensor for the current configuration, the pore pressure
tensor p and the nominal pore pressure tensor P are introduced as

p D p i D p ıij ei ˝ ej; P D P I D P ıKi EK ˝ e i D J �.F �/�1p (6.21)

where I is the shifter, which transfers the basis ei for the current configuration to
the basis EK for the reference configuration.

We now introduce incompressibility conditions for the fluid phase and the solid
phase (� D constant, �� D constant). Under these conditions we have (5.55) and
(5.56). Since trD� D div v�, we can apply Nanson’s formula to (5.55), and obtain
the following seepage equation for consolidation in the reference configuration:

tr QD� C Div� QV D 0 (6.22)

QD� D 1

2

h
Grad� V � C .Grad� V �/T

i
; V � D J �.F �/�1v�: (6.23)

It may be noted that Darcy’s law (6.18) is applied to the term QV of (6.22).

6.3.2 Lagrangian Equation of Equilibrium

As shown by (2.116), the equation of equilibrium in terms of the total stress for the
reference configuration can be written as
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Div�…T .X�/C N�0 b.X�/ D 0 (6.24)

where

… D J �.F �/�1� (6.25)

is the first Piola-Kirchhoff stress corresponding to the total stress � , and we have

N�0 D N�J �; N� D � nC ��.1 � n/: (6.26)

Let us decompose … into an effective stress …0 and a pore pressure P D P I such
that

… D …0 �P; …0 D J �.F �/�1� 0; P D J �.F �/�1p: (6.27)

Note that P is already given in (6.21). By substituting (6.27) into (6.24), we obtain
the following Lagrangian equation of equilibrium under a finite strain field:

Div�…0T � I
TGrad�P C N�0 b D 0: (6.28)

In indicial form (6.28) can be written as

@…0
Ki

@X�
K

� @P

@X�
K

ıKi C N�0 bi D 0: (6.29)

6.3.3 Incremental Form of the Equation of Equilibrium

By taking a time-differentiation of (6.28), we have

@ P…0
Ki

@X�
K

� @ PP
@X�

K

ıKi C PN�0 bi D 0 (6.30)

where b is a constant. This is referred to as the total Lagrangian incremental
equilibrium equation. The vector form of (6.30) is given as

Div� P…0T � I
TGrad� PP C PN�0 b D 0: (6.31)

As shown by (2.128), we can introduce a rate of the effective nominal stress
ı
…0

and a rate of the nominal pore pressure
ı
P as

ı
…0 D .J �/�1F � P…0 D P� 0 �L�� 0 C � 0 trD�; (6.32)
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ı
P D .J �/�1F � Pp D Pp �L�p C p trD�: (6.33)

Then, we have

@
ı
…0
j i

@xj
D .J �/�1

@ P…0
Ki

@X�
K

;
@

ı
P

@xj
ıji D .J �/�1

@ PP
@X�

K

ıKi:

Thus, (6.30) can be rewritten as

@
ı
…0

ji

@xj
� @

ı
P

@xi
C PN� bi D 0 (6.34)

where N� D .J �/�1 N�0. This is referred to as the updated Lagrangian incremental
equilibrium equation. In a vector form we have

div
� ı
…0�T � grad

ı
P C PN� b D 0: (6.35)

6.4 A Weak Form of Biot’s Consolidation Equations
and Finite Element Analysis

The analytical solution of these three-dimensional coupled equations can be accom-
plished for only very specialized states of deformation (Selvadurai 2007). For
this reason, computational approaches have been developed for the solution of
poroelasticity problems; a finite element scheme is used here to solve this problem.

6.4.1 Strong Form

The strong form of Biot’s consolidation equations is given as follows:

Governing equations

@�� 0
ij

@xj
� @�p

@xi
D 0 in 
 (6.36)

@�"v

@t
C @

@xi

�
kij

	w

@�p

@xj

�

D 0 in 
 (6.37)
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Strain–displacement relation

�"ij D 1

2

�
@�ui
@xj

C @�uj
@xi

�

(6.38)

Boundary conditions (BC)1

�ui D �Nui on @
u (6.39)
�
�� 0

ij ��p ıij
�
nj D �Nti on @
t (6.40)

�p D � Np on @
p (6.41)

�kij

g

@�p

@xj
ni D � Nqw on @
q (6.42)

Initial conditions (IC)

�ui .x; tD0/ D �u0.x/; �p.x; tD0/ D �p0.x/ in 
 (6.43)

Here � 0
ij is the effective stress, which acts on the solid skeleton, p is the pore

pressure, "v is the volumetric strain, kij is the hydraulic conductivity tensor, and
	w D �g is the bulk weight of the liquid phase. It should be noted that the mass flux
is described as qw D �Krp=g, and the boundary condition is given by (6.42). We
use a convention where � 0

ij is positive for tension, and p is positive for compression.
We assume that in Biot’s consolidation equations the porous medium is fully

saturated, and the fluid phase is incompressible. The excess pore pressure �p is an
increase (or a decrease) of pore pressure from the hydrostatic pressure; therefore the
equation of equilibrium (6.36) is given in an incremental form.

6.4.2 Weak Form

The weak form of Biot’s consolidation equations is obtained as

Z

@
t

�Nti vi ds �
Z




�

�� 0
ij ��pıij

�
@vi
@xj

dv D 0; (6.44)

1The load boundary condition (6.40) is given for a total stress. If it is given for an effective stress,
it is modified as

�� 0
ij nj D �Nt 0i :

The weak form is modified because of this condition.
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Z

@
q

� Nqw

�
� ds C

Z




�
@�"v

@t
�� kij

	w

@�p

@xj

@�

@xi

�

dv D 0: (6.45)

6.4.3 Finite Element Analysis

For purposes of illustration we restrict our attention to the two-dimensional problem,
and introduce a Galerkin finite element approximation to the weak form (6.44)
and (6.45). The unknown functions are the increment of displacement �u and
the incremental excess pore pressure �p. Introducing the global shape functions
N˛.x; y/ .˛D 1; 2; � � � ; N / and NN˛.x; y/ .˛D 1; 2; � � � ; NN/ corresponding to each
variable, we have

�u ' �uh D N .x; y/�U .t/; (6.46)

�p ' �ph D NN .x; y/�P.t/; (6.47)

where

N .x; y/ D
�
N1 0 N2 0 � � � N˛ 0 � � � NN 0

0 N1 0 N2 � � � 0 N˛ � � � 0 NN

�

(6.48)

�U .t/ D
h
�U1

x �U
1
y �U

2
x �U

2
y � � � �U˛

x �U
˛
y � � � �UN

x �UN
y

iT
(6.49)

NN .x; y/ D � NN1 NN2 � � � NN˛ � � � NN NN
	

(6.50)

�P.t/ D �
�P1 �P2 � � � �P˛ � � � �P NN

	T
(6.51)

where N and NN are the numbers of nodes of the displacement and pore pressure,
respectively. Note that in a finite element analysis of the consolidation problem we
commonly use a shape function for the pore pressure that is one order less than
the shape function for the displacement due to the stability of a numerical scheme.
Details can be found in Zienkiewicz et al. (1999) and Ichikawa (1990).

Under the interpolation of an incremental displacement (6.46) the strain incre-
ment (6.38) is represented as

�" ' �"h D B�U (6.52)

where

B D �
B1 B2 � � � B˛ � � � BN

	
(6.53)
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B˛ D

2

6
6
6
6
6
4

@N˛

@x
0

0
@N˛

@y
@N˛

@y

@N˛

@x

3

7
7
7
7
7
5

The increment of volumetric strain �"v for a two-dimensional plane strain prob-
lem is

�"v D �"xx C�"yy D @�ux
@x

C @�uy
@y

; (6.54)

and by substituting the representation (6.46) we have

�"v ' �"vh D Bv�U (6.55)

where

Bv D
�
@N1

@x

@N1

@y

@N2

@x

@N2

@y
� � � @N˛

@x

@N˛

@y
� � � @NN

@x

@NN

@y

�

(6.56)

By using the interpolation function (6.47) of the increment of pore pressure, its
gradient r.�p/ is represented as

r .�p/ ' r.�p/h D G�P (6.57)

where

G D

2

6
6
6
4

@N1

@x

@N2

@x
� � � @N˛

@x
� � � @N NN

@x

@N1

@y

@N2

@y
� � � @N˛

@y
� � � @N NN

@y

3

7
7
7
5
: (6.58)

We use the same interpolation functions for arbitrary functions v and � as �u
and�p, which is known as Galerkin’s method:

v ' vh D N .x; y/V ; (6.59)

� ' �h D NN .x; y/H : (6.60)

We apply the above interpolations into the weak forms (6.44) and (6.45). Since
vectors V and H are arbitrary, we have the following vector form of the coupled
ordinary differential equations:

�
K �C

�C T 0

� �
� PU
� PP

�

C
�
0 0

0 � NK
� �

�U

�P

�

D
�
�F

�Q

�

(6.61)
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where

K D
Z




BTDB dv; C D
Z




BT
v

NN dv; �F D
Z

@
t

N T �Nt ds; (6.62)

NK D
Z




k

	w
GTG dv; �Q D

Z

@
q

NN T � Nqw

�
dv; (6.63)

and k is assumed to be isotropic (i.e. kij D k ıij).
Let us write (6.61) as

A PX CBX D Y (6.64)

A D
�
K C

C T 0

�

; B D
�
0 0

0 NK
�

; X D
�
�U

�P

�

; Y D
�
�F

�Q

�

:

Since we introduced the Galerkin finite element approximations in space, the result
(6.64) is an ordinary differential equation in the time-domain.

We solve the ordinary differential equation (6.64) using a finite difference
scheme, referred to as the �-method. Let the value Xn�1 at a discretized time-step
n � 1 be known, then we can write the unknown value Xn at the time-step n as
follows:

Xn D Xn�1 C�t
h
.1 � �/ PXn�1 C � PX n

i
(6.65)

where �t is a time difference between the step n� 1 and the step n, while the
parameter � is given as

0 
 � 
 1:

The cases � D 0, � D 1 and � D 0:5 correspond to the explicit, implicit and Crank-
Nicolson finite difference schemes, respectively. Since (6.64) is satisfied both for
the .n�1/th and nth steps, we have

A PXn�1 CBXn�1 D Y n�1; A PXn CBXn D Y n: (6.66)

We multiply (6.66)1 by .1��/ and (6.66)2 by � and add both equations to obtain

A
h
.1 � �/ PX n�1 C � PXn

i
C.1��/BXn�1C�BX n D .1��/Y n�1C�Y n: (6.67)

By substituting (6.65) into (6.67), the successive form of the �-method is given as

�
1

�t
A C �B

�

Xn D .1 � �/Y n�1 C �Y n C
�
1

�t
A � .1 � �/B

�

Xn�1 (6.68)

We then obtain�U n and �Pn at each time-step by solving (6.68).
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6.5 The Cam Clay Model

Constitutive developments in the description of geomaterials have been the subject
of extensive research over the past six decades. The scope of these developments is
given by Desai and Siriwardane (1984), Darve (1990), Davis and Selvadurai (2002),
and Pietruszczak (2010), etc. The Cam clay model (also known as the Cambridge
model) is one that has been used widely to describe geomaterial behavior (Schofield
and Wroth 1968; Parry 1971; Houlsby and Schofield 1993; Oka 1995).

In this Section we present an outline of the Cam clay model. Note that we assume
a conventional triaxial stress state (�2 D �3), and the following variables for stress
and strain are introduced:

�1; �2; �3 : principal values of the total stress � (tension positive)
� 0
1; �

0
2; �

0
3 : principal values of the effective stress � 0 (tension positive)

"1; "2; "3 : principal values of the strain " (tension positive)
p0 D �.� 0

1 C 2� 0
3/=3 : effective pressure (i.e., isotropic stress) under biaxial state

(compression positive)
q D �.�1 � �3/ : shear stress
"v D �."1 C 2"3/ : volumetric strain under a biaxial state (compression

positive)
"s D �2."1 � "3/=3 : shear strain

6.5.1 Normally Consolidated Clay

If we perform undrained triaxial tests (namely, void ratio eDconstant) on isotrop-
ically and normally consolidated clay at several confining pressures .p0

0/, the
stress-strain behavior is schematically shown in Fig. 6.2. It is observed that at the
final stage of loading (namely, the failure state) the stress ratio � D q=p0 becomes
constant (�f D .q=p0/f D M ), which is referred to as the critical state, which
means that the deformation is developed under a constant volumetric plastic strain
and a constant shear stress at the critical state q D Mp0.

This result is similar to drained triaxial tests (namely, � 0
3 D constant, dp0 D �

.1=3/d� 0
1, dqD � d� 0

1, dq=dp
0 D 3). As shown in Fig. 6.2d, if an undrained stress

path B-B0 under a consolidation pressure p0
0B intersects with a drained stress path

A-A00 under a consolidation pressure p0
0A at a point C, the void ratio obtained from

the undrained test is the same as the void ratio obtained from the drained test. We
can draw these states in a space .p0; q; e/ as illustrated in Fig. 6.2f, which shows
that the critical state is reached after travelling the surface referred to as the state
boundary surface or Roscoe surface in both the undrained and drained tests. The
line of failure is known as the critical state line (CSL). It is noted that the projection
of CLS in the space .p0; q; e/ onto the space .p0; q/ is given as q D Mp0, and
the surface formed by CLS and its projection onto .q; e/ is referred to as Hvoslev
surface, which is a failure surface found by Hvoslev in 1937 through a series of
direct shear tests conducted on Vienna clay.
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a d

b e

c f

Fig. 6.2 Response of normally consolidated clay

6.5.2 Over-consolidated Clay

If the current stress state of volumetric effective stress is lower than the stress state
experienced in the past, the clay is said to be over-consolidated, and we define the
over-consolidated ratio as OCRD p0

0=p
0
i where p0

0 is the preload pressure and p0
i
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is the current effective pressure swelled from p0
0. Note that for a natural clay the

swelling curve does not clearly turn at the preloading curve, and therefore the over-
consolidated ratio is defined by using the value of the turning point p0

e, namely
OCRDp0

e=p
0
i .

The response of an over-consolidated clay depends on the initial state, namely
from the position in relation to the critical state line (CSL). As shown in Fig. 6.3d
the clay, which is located at the left side of the CSL is heavily over-consolidated,
referred to as the dry side or drier than critical, while the clay that is located at
the right side of the CSL is lightly over-consolidated, referred to as the wet side or
wetter than critical.

We observe a softening response, as shown Fig. 6.3a, b for a drained test, and the
stress reaches a residual state described as R in Fig. 6.3a after a peak point Q; the
volumetric strain changes at Q from compression to dilation.

Let us consider the shearing behavior of a heavily over-consolidated clay. We
start to make it swell from a point A on the normally consolidated line (NCL) to a
point B shown in Fig. 6.3d, e. When we perform an undrained triaxial test, the shear
stress q attains the yield point P on the Hvoslev surface (namely the maximum point
for the stress ratio � D q=p0), and moves on the Hvoslev surface to reach the point
C on the CSL. On the other hand, if a drained triaxial test is performed from the
point B, the shear stress q attains the peak strength Q, then the stress reaches a
residual state R through a softening process. Note that in practical experiments a
shearing slip surface is commonly observed, and the whole specimen cannot reach
the residual state.

The shearing behavior of a lightly over-consolidated clay is as follows: initially it
swells from a point A0 on the NCL to a point D, as shown in Fig. 6.3d, e. Then, after
performing an undrained triaxial test, the shear stress q directly attains the point C
on the CSL. Thus, the behavior of a lightly over-consolidated clay is different from
that of a heavily over-consolidated clay, and is similar to the normally consolidated
clay. On the other hand, if we perform a drained test, the stress q reaches the CSL at
a point F, after which the clay experiences plastic flow under a constant volumetric
plastic strain.

6.5.3 The Original Cam Clay Model

A hardening/softening behavior is shown in Figs. 6.2e or 6.3d. It has been rewritten
in the space .e; lnp0/, to give Fig. 6.4 where v D 1C e is the volume ratio.
Figure 6.4a gives the normally consolidated state, and Fig. 6.4b gives a general stress
state where the shear stress is generated by moving along the state boundary surface
shown in Fig. 6.2.

Let the compressive strain be positive, then the increment of the volumetric strain
is given as

d"v D �dv

v
D � de

1C e
: (6.69)
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Fig. 6.3 Response of over-consolidated clay
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a b

Fig. 6.4 Compression characteristics

If the clay is in a normally consolidated state, referring to Fig. 6.4a, an elastic
component dee and plastic component dep of an increment of the void ratio de D
deeCdep is given by

de D ��d.lnp0/ D ��dp
0

p0 (6.70)

dee D �� d.lnp0/ D �� dp
0

p0 (6.71)

dep D de � dee D �.� � �/
dp0

p0 (6.72)

where � is the slope of normal compression in the e vs. lnp0 plane, referred to as
the compression index, and � is the slope of the unloading-reloading line in the e
vs. lnp0 plane, referred to as the swelling index. Therefore the increment of plastic
volumetric strain d"pv is written as

d"pv D � dep

1C e
D � � �
1C e

dp0

p0 D MD
dp0

p0 (6.73)

Here M is the slope of the critical state line CSL shown in Fig. 6.2d, and we
defineD as

D D � � �
M.1C e/

: (6.74)

If we have a general stress state as shown in Fig. 6.4b, the results (6.69)–
(6.74) are satisfied. In addition we can introduce the stress state on the normally
consolidated line (p0 Dp0

y; qD 0) under the same condition of void ratio as
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observed in Fig. 6.4b, and we have

d"pv D � dep

1C e
D � � �

1C e

dp0
y

p0
y

D MD
dp0

y

p0
y

: (6.75)

A normality rule is assumed on the yield locus f .p0; q/D 0 (namely, the
associated flow rule) as shown in Fig. 6.5, so that we have

d"
p
v

d"
p
s

D � dq

dp0 (6.76)

where d"ps is an increment of the plastic shear strain.
We introduce the stress–dilatancy relation presented by Taylor (1948), which

is schematically shown in Fig. 6.6. Taylor visualized direct shearing along jagged
surfaces, and obtained an increment of the work done due to a normal force P and
shear forceQ on the respective displacements, as follows:

dW D P duy CQdux (6.77)

where dux and duy are the increments of normal and shearing displacements. Let
us assume that all external work is consumed by friction (namely, no elastic energy),
and the Coulomb friction is generated by the action of the normal force and a friction
coefficient �. Then we have

Fig. 6.5 Cam clay model
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Fig. 6.6 Taylor’s
stress–dilatancy model

dW D dW p D �P dux: (6.78)

In this case we have the following stress-dilatancy relation of Taylor:

P duy CQdux D �P dux: (6.79)

We rewrite (6.79) in terms of stress and strain as follows:

dW p D p0 d"pv C q d"ps D Mp0 d"ps : (6.80)

Note that at the critical state we have

d"
p
v

d"
p
s

D 0

and (6.80) gives the following relationship:

q

p0 D M:

By modifying (6.80) we have

q

p0 C d"
p
v

d"
p
s

D M: (6.81)

We substitute the normality rule (6.76) into (6.81), and obtain

dq

dp0 � q

p0 D �M: (6.82)

By solving the differential equation (6.82) we have

q D �Mp0 ln

�
p0

p0
0

�

:

This corresponds to a stress part f1.� / of the yield function (2.297):
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f1.� / D q

Mp0 C ln

�
p0

p0
0

�

D 0 .for � D 0/ (6.83)

where p0
0 is the value of p0

y on the initial yielding surface (Fig. 6.5).
For simplicity, we introduce the following isotropic hardening rule with the strain

hardening parameter:

f .� ; �."pv // D f1.� /�K.�/ D 0; (6.84)

d� D jd"pv j D


d"pv d"

p
v

�1=2
: (6.85)

We must satisfy the following condition, which corresponds to the state on the
normally consolidated line (p0 D p0

y; q D 0):

f .p0Dp0
y; qD0; �/ D ln

�
p0
y

p0
0

�

�K.�/ D 0:

Then the consistency condition gives

df D d.lnp0
y/� dK

d�
d� D 0: (6.86)

We substitute (6.75) into (6.86), and using (6.85) we obtain

�
d"

p
v

MD

�2
D
�
dK

d�

�2

d"pv

�2
: (6.87)

Under the conditionsK>0; �>0 we solve (6.87):

dK

d�
D 1

MD
) K D 1

MD

Z

d�:

Finally we obtain the following yield function, which is referred to as the original
Cam clay model:

f D MD ln
p0

p0
0

CD� �
Z

d� D 0; (6.88)

� D q

p0 W stress ratio: (6.89)

When deriving (6.89), we have assumed that MD is a constant. However, referring
to (6.74), we understand MD D .���/=.1Ce/, which shows that MD is a function
of the void ratio e. In this sense, the model (6.89) is relevant to a small strain theory.
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6.5.4 Modified Cam Clay Model

Recall that Taylor’s stress–dilatancy model is introduced under the hypothesis that
only the friction term of shearing displacement due to the normal force contributes
to the plastic work done, as given in (6.78). Here this is modified by considering the
component of volumetric displacement as

dW p D p0 d"pv C q d"ps D p0h.d"pv /2 C .M d"ps /
2
i1=2

: (6.90)

This is rewritten as
d"

p
v

d"
p
s

D .p0/2M2 � q2

2p0q
: (6.91)

We substitute the normality rule (6.76) into (6.91), and obtain

dq

dp0 C M2 � �2
2�

D 0 (6.92)

where � D q=p0. We solve (6.92) and obtain

f1.� / D p0

p0
0

� M2

M2 C �2
D 0 .for � D 0/: (6.93)

Note that as shown in Fig. 6.7, (6.93) gives an ellipse in the space .p0; q/.
The hardening rule is introduced under an isotropic hardening model with a strain

hardening parameter, which is the same as the original Cam clay model:

f .� ; �."pv // D f1.� /�K.�/ D 0; d� D jd"pv j D


d"pv d"

p
v

�1=2
(6.94)

Fig. 6.7 Modified Cam clay model
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We use the condition

f .p0 Dp0
y; qD0; �/ D p0

y

p0
0

� 1 �K D 0 ) p0
y D .1CK/p0

0 (6.95)

and apply the consistency condition

df D dp0
y

p0
0

� dK

d�
d� D 0 ) dp0

y

p0
y

D p0
0

p0
y

dK

d�
d�: (6.96)

We then substitute (6.72) into (6.96), and by using (6.85) and (6.95) we have

�
d"

p
v

MD

�2
D
�

1

1CK

�2�
dK

d�

�2�
d�
�2

Since K>0; �>0, we obtain

Z
dK

1CK
D ln.1CK/ D 1

MD

Z

d�;

which results in

K D exp

�
1

MD

Z

d�

�

� 1: (6.97)

The yield function is finally given as

f D p0

p0
0

� M2

M2 C �2
C 1 � exp

�
1

MD

Z

d�

�

D 0: (6.98)

6.5.5 Elasto-plastic Constitutive Law

By applying the procedure described in Sect. 2.10.3, the elasto-plastic constitutive
law is obtained, which relates the increment of effective stress d� 0 to the strain
increment d" as

d� 0
ij D D

ep
ijkld"kl ; (6.99)

D
ep
ijkl D De

ijkl � 1

H

�

De
ijmn

@g

@� 0
mn

��

De
klst

@f

@� 0
st

�

; H D hC @f

@� 0
ij

�

De
ijkl

@g

@� 0
kl

�

(6.100)
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Since both the original and modified Cam clay models employ an associated flow
rule, the plastic potential function g is the same as the yield function f . We use
(6.88) and (6.98), and obtain the hardening coefficient h as follows:

Cam clay model: h D @K

@�

ˇ
ˇ
ˇ
ˇ
@f

@� 0

ˇ
ˇ
ˇ
ˇ D 1

MD

ˇ
ˇ
ˇ
ˇ
@f

@� 0

ˇ
ˇ
ˇ
ˇ; (6.101)

Modified Cam clay model: h D @K

@�

ˇ
ˇ
ˇ
ˇ
@f

@� 0

ˇ
ˇ
ˇ
ˇ D 1

MD
exp

�
1

MD

Z

d�

�ˇ
ˇ
ˇ
ˇ
@f

@� 0

ˇ
ˇ
ˇ
ˇ:

(6.102)



Chapter 7
Introduction to Homogenization Analysis

We outline the essential features of a multiscale homogenization analysis. A
problem of a one-dimensional elastic bar is given as an example.

The topic of homogenization has been extensively discussed in the literature
in the context of multiphase components and heterogeneous media that are either
microscopically periodic or non-periodic (Sanchez-Palencia 1980; Bakhvalov &
Panasenko 1984; Ene and Polisevski 1987; Hornung 1997; Milton 2002; Torquato
2002; Dormieux et al. 2006).

7.1 One-dimensional Problem of an Elastic Bar

We consider the problem of an elastic bar where the elastic modulus is inhomo-
geneous. The bar is subjected to a state of uniaxial force F at the end point. The
equation of equilibrium for the bar is given by

d

dx

�

E
du".x/

dx

�

D f (7.1)

where u".x/ is the displacement ('" shows that the function ' rapidly changes in
the local scale), E is the elastic modulus, and f is the body force acting on a unit
volume.

7.2 Micro/Macro Coordinates

As shown in Fig. 7.1, we consider a one-dimensional bar with a periodic structure
at the microscale level.

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 7, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 7.1 The problem of a one-dimensional elastic bar with periodic microstructure

We introduce a macroscale coordinate system x0 and a microscale one x1 for the
general system x as

x D x.x0; x1/: (7.2)

We assume the systems x0 and x1 are related, with

x1 D x0

"
(7.3)

where " is a (small) parameter. If we consider the limit condition " ! 0, the
differential operation in (7.1) should be changed to

d

dx
D @

@x0
C @

@x1
@x1

@x0
D @

@x0
C 1

"

@

@x1
: (7.4)

The periodic microstructure is referred to as a unit cell. In homogenization analysis
we assume that the size of the unit cell is sufficiently small, and by taking the
limit "! 0 we derive a system of differential equations that relates the microscale
behavior to the microscale characteristics.

7.3 Microscale and Macroscale Problems

We assume that the displacement u".x/ can be represented as a power series in the
small parameter " in the form

u".x/ D u0.x
0; x1/C "u1.x

0; x1/C "2u2.x
0; x1/C � � � (7.5)
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Fig. 7.2 A microscale
periodic function

where u0.x0; x1/; u1.x0; x1/; u2.x0; x1/; � � � are periodic functions in terms of the
size of the unit cell X1 of the microscale system x1:

ui .x
0; x1/ D ui .x

0; x1 CX1/; i D 0; 1; 2; � � � (7.6)

ui .x0; x1/ are referred to asX1-periodic functions. The expansion (7.5) implies that
the displacement u" consists of a globally changing part, which is related to x0 and
a locally changing one that is related to x1, see Fig. 7.2.

By substituting (7.4) and (7.5) into the governing equation (7.1), we have

1

"2
@

@x1

�

E
@u0
@x1

�

C 1

"

�
@

@x1

�

E
@u0
@x0

�

C @

@x1

�

E
@u1
@x1

��

C
�
@

@x0

�

E
@u0
@x0

�

C @

@x1

�

E
@u1
@x0

�

C @

@x0

�

E
@u1
@x1

�

C @

@x1

�

E
@u2
@x1

�

� f .x0/
�

C � � � D 0: (7.7)

We require that as "!0, all terms with respect to "must be null, and we then obtain
the following equations corresponding to each "-term:

"�2-term W @

@x1

�

E
@u0
@x1

�

D 0: (7.8)

This equation suggests that u0 is a function of only x0:

u0 D u0.x
0/: (7.9)

"�1-term W @

@x1

�

E
@u1
@x1

�

D � @

@x1

�

E
@u0
@x0

�

: (7.10)

This gives a differential equation of u1.x0; x1/ with respect to the coordinate system
x1 if the term u0.x0/ is known. Then, we introduce a separation of variables as

u1.x
0; x1/ D N.x1/

@u0.x0/

@x0
(7.11)
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whereN.x1/ is referred to as the characteristic function. By substituting (7.11) into
(7.10), we obtain the following differential equation to identify the characteristic
functionN.x1/:

d

dx1

�

E.x1/
d

dx1
.N.x1/C x1/

�

D 0: (7.12)

The differential equation (7.12) is referred to as the microscale equation, which can
be solved under the periodic boundary condition (7.6).

"0-term W @

@x1

�

E
@u2
@x1

�

D f .x0/� @

@x0

�

E
@u0
@x0

�

� @

@x1

�

E
@u1
@x0

�

� @

@x0

�

E
@u1
@x1

�

(7.13)

We introduce an averaging operation for a function �.x1/ for the unit cell as

D
�
E

D 1

jX1j
Z X1

0

� dx1

where jX1j is the length of the unit cell. If � is an X1-periodic function, we have

�
d�

dx1

�

D 1

jX1j


�.X1/ � �.0/

�
D 0:

Thus the average of (7.13) is written as

d

@x0

�

E� du0
dx0

�

D f .x0/ (7.14)

where

E� D
�

E.x1/C E.x1/
dN

dx1

�

(7.15)

is the averaged or homogenized elastic modulus. Equation 7.14 is referred to as the
macroscale equation.

In conclusion, the homogenization analysis procedure can be stated as follows:
(1) The microscale equation (7.12) is first solved under the periodic boundary
condition, which gives the characteristic functionN.x1/. (2) Using the characteristic
function N.x1/ we then calculate the averaged elastic modulus E�. (3) The
macroscale equation (7.14) can then be solved, giving the first perturbed term
u0.x0/. Since u1.x0; x1/ is calculated by (7.11), the first order approximation of
u".x/ can be represented as

u".x/ ' u0.x
0/C " u1.x

0; x1/: (7.16)
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The strain, that includes a microscale effect, is then calculated as

"x D du".x/

dx
' @u0
@x0

C "
@u1
@x0

C @u1
@x1

: (7.17)

The stress is given by
� D E"x: (7.18)



Chapter 8
Homogenization Analysis and Permeability of
Porous Media

The Navier-Stokes’ (NS) equations can be used to describe problems of fluid flow.
Since these equations are scale-independent, flow in the microscale structure of a
porous medium can also be described by a NS field. If the velocity on a solid surface
is assumed to be null, the velocity field of a porous medium problem with a small
pore size rapidly decreases (see Sect. 5.3.2). We describe this flow field by omitting
the convective term v � rv, which gives rise to the classical Stokes’ equation1. We
recall that Darcy’s theory is usually applied to describe seepage in a porous medium,
where the scale of the solid skeleton does not enter the formulation as an explicit
parameter. The scale effect of a solid phase is implicitly included in the permeability
coefficient, which is specified through experiments. It should be noted that Kozeny-
Carman’s formula (5.88) involves a parameter of the solid particle; however, it is
not applicable to a geometrical structure at the local pore scale.

If a homogenization analysis (HA) is applied to porous media flow, which is
described by the Stokes’ equation, we can immediately obtain Darcy’s formula
and the seepage equation in a macroscale field while in the microscale field the
distributions of velocity and pressure are specified (Sanchez-Palencia 1980). We
can also apply HA for a problem with a locally varying viscosity.

In this Section we first show that a local variation of viscosity in the pore
water of a saturated smectitic clay such as montmorillonite or beidellite, which is a
platelet crystal of about one nanometer (D10�9 m) thickness, can be calculated by
a molecular dynamic (MD) simulation. Then, by applying the HA with the locally
distributed viscosity, we can calculate the seepage field of the smectitic clay, which
consists of stacks of clay minerals. Consequently, we apply a three-scale analysis
of homogenization for a bentonite clay with quartz grains of about 10�m (1�m D
10�6 m).

1Note that even if a multiscale procedure is started with a NS equation with the convective term,
this nonlinear term is dropped as a higher order term.

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 8, © Springer-Verlag Berlin Heidelberg 2012
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8.1 Micro-inhomogeneous Porous Media and Stokes’
Equation

Stokes’ equation for an incompressible fluid is given as follows:

�@p
"

@xi
C @

@xj

�

�
@v"i
@xj

�

C fi D 0 in 
f; (8.1)

@v"i
@xi

D 0 in 
f (8.2)

where v"i is the velocity,p" is the pressure, fi is the body force, � is the viscosity, and

f is the fluid domain. The superscript " indicates that the corresponding function
rapidly varies in the local field because of the micro-inhomogeneous property. We
recall that (8.1) is based on the conservation law of linear momentum, and (8.2) is
the mass conservation law for an incompressible viscous fluid. The convective term
vj @vi =@xj is disregarded during the procedure of homogenization as a second order
of small value. The velocity at a solid-fluid interface is assumed to be null:

v"i D 0 on �: (8.3)

8.2 Seepage Theory for Two-scale Porous Media

We consider the micro-/macro-problem for a saturated two-scale porous medium as
shown in Fig. 8.1 with the macro-domain
0 and the micro-domain
1, and 
1f is
the fluid phase in the micro-domain,
1s is the solid phase in the micro-domain, �
is the fluid/solid interface, and @
1f is the periodic boundary of the fluid phase in
the micro-domain.

Let us introduce a macroscale coordinate system x0 and a microscale coordinate
system x1 as

x D x.x0;x1/: (8.4)

Both systems are assumed to be related by

x1 D x0

"
(8.5)

where " is a scaling parameter. As shown in Fig. 8.1, if the size of a unit cell in the
macro-domain is given by .X0

1 D "X1
1 ; X

0
2 D "X1

2 /, the size in the micro-domain is
.X1

1 ; X
1
2 /. In taking the limit "!0, the differential operation can be changed to

@

@xi
D @

@x0i
C 1

"

@

@x1i
: (8.6)
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Fig. 8.1 A micro-/macro-problem for two-scale porous media

Note 8.1 (On the size of a unit cell). We can determine the size of the micro-domain
based on (8.5). If the dimensions of the unit cell are given by X1

1 ; X
1
2 ; X

1
3 in each

direction as shown Fig. 8.1, we have the following relations in the macro-domain:

X0
1 D "X1

1 ; X0
2 D "X1

2 ; X0
3 D "X1

3 : (8.7)

Thus for a non-cubic unit cell .X1
1 ¤X1

2 ¤X1
3 / we have

" D L D X0
1 
 1I X1

1 D 1; X1
2 D X0

2

L
; X1

3 D X0
3

L
(8.8)

where L D X0
1 . Under this condition the geometry of the unit cell is maintained as

"!0. �

8.2.1 Homogenization Analysis and Seepage Problem of
Porous Media

Let us introduce a perturbation in terms of both the x0 and x1 coordinate systems
for the velocity v"i and the pressure p":

v"i .x/ D "2v0i .x
0;x1/C "3v1i .x

0;x1/C � � � ; (8.9)

p".x/ D p0.x0;x1/C "p1.x0;x1/C � � � ; (8.10)

where v˛i .x
0;x1/ and p˛.x0;x1/ .˛ D 0; 1; 2; � � � / are periodic functions, which

satisfy the following periodic boundary conditions in the micro-domain:
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v˛i .x
0;x1/ D v˛i .x

0;x1 CX 1/; (8.11)

p˛.x0;x1/ D p˛.x0;x1 CX 1/: (8.12)

X 1 gives the size of a unit cell for each direction. The perturbation of the velocity
v"i implies that v"i consists of the sum of the global change in terms of the macro-
domain and the local change in terms of the micro-domain, and the conditions are
the same for the pressure p". The reason why the initial order of perturbation is
different between v"i (starting with the term "2) and p" (starting with the term "0)
is that the order of differentiation for v"i is different from the order of p" in the
governing equation (8.1).

By substituting (8.6), (8.9) and (8.10) into Stokes’ equation (8.1), we obtain

�

�
�
@p0

@x0i
C 1

"

@p0

@x1i

�

� "

�
@p1

@x0i
C 1

"

@p1

@x1i

�

� � � �
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�
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@x0j

�

�
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@x0j

�

C 2
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@

@x0j
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�
@v0i
@x1j

�

C 1

"2
@

@x1j

�

�
@v0i
@x1j

�


C"3
�
@

@x0j

�

�
@v1i
@x0j

�

C 2
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@

@x0j

�

�
@v1i
@x1j

�

C 1
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@

@x1j

�

�
@v1i
@x1j

�


C � � � C fi

D �1
"
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@x1i
C "0

�

�@p
0

@x0i
� @p1

@x1i
C @

@x1j

�

�
@v0i
@x1j

�

C fi
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�@p
1

@x0i
� @p2

@x1i
C 2

@

@x0j

�

�
@v0i
@x1j

�

C @

@x1j

�

�
@v1i
@x1j

�


C"2
�

�@p
2

@x0i
� @p3

@x1i
C @

@x0j

�

�
@v0i
@x0j

�

C 2
@

@x0j

�

�
@v1i
@x1j

�

C @

@x1j

�

�
@v2i
@x1j

�


C � � �

D 0:

As " ! 0, we have the following perturbed equations:

"�1-term:
@p0

@x1i
D 0 (8.13)

"0-term: � @p1

@x1i
C @

@x1j

�

�
@v0i
@x1j

�

D @p0

@x0i
� fi (8.14)

We estimate the term "�1 as

@p0

@x1i
D 0 ) p0.x0;x1/ D p0.x0/: (8.15)

This implies that p0 is a function of only x0.
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By substituting (8.6) and (8.9) into the mass conservation equation (8.2), we have

"2
�
@v0i
@x0i

C 1

"

@v0i
@x1i

�

C "3
�
@v1i
@x0i

C 1

"

@v1i
@x1i

�

C � � �

D "1
@v0i
@x1i

C "2
�
@v0i
@x0i

C @v1i
@x1i

�

C � � �

D 0:

Then for the terms "1 and "2, we obtain

"1-term:
@v0i
@x1i

D 0 (8.16)

"2-term:
@v0i
@x0i

C @v1i
@x1i

D 0: (8.17)

The r.h.s. terms of (8.14) are functions of only x0, and we introduce a separation
of variables for the r.h.s. terms p1.x0;x1/ and v0i .x

0;x1/ as

v0i .x
0;x1/ D �

�
@p0.x0/

@x0j
� fj .x0/

�

vji .x
1/ (8.18)

p1.x0;x1/ D �
�
@p0.x0/

@x0j
� fj .x0/

�

pj .x1/: (8.19)

By subsituting (8.18) and (8.19) into (8.14) and (8.16), we obtain the following
incompressible flow equations in the micro-domain, referred to as the microscale
equations for Stokes’ flow:

�@p
k

@x1i
C @

@x1j

�

�
@vki
@x1j

�

C ıik D 0 in 
1f (8.20)

@vki
@x1i

D 0 in 
1f (8.21)

where vki .x
1/ and pk.x1/ are characteristic functions for velocity and pressure,

respectively, and ıik is Kronecker’s delta. If we solve (8.20) and (8.21) under the
microscale periodic boundary conditions, we obtain the characteristic functions
vki .x

1/ and pk.x1/, which involve the microscale inhomogeneity in geometry and
material properties.

We recall that Darcy’s law gives a relationship between the seepage velocity
and the gradient of the total head. Based on the homogenization theory, we obtain
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the following homogenized form of Darcy’s law by averaging (8.18) in the micro-
domain:

Qv0i .x0/ D ˝
v0i .x

0;x1/
˛ D �Kji

�
@p0.x0/

@x0j
� fj .x

0/

�

; (8.22)

Kij 	 ˝
vij .x

1/
˛ D 1

j
1j
Z


1f

vij .x
1/ dx1 (8.23)

where j
1j is the volume of the unit cell, and
˝�˛ gives an averaging operation.

Let us introduce a weak form for the microscale equations for Stokes’ flow
(8.20): �

�� @vki
@x1j

C pkıij ;
@wi
@x1j

�

C
D
ıki ; wi

E
D 0; 8w 2 VX1 (8.24)

where VX1 is defined by

VX1 D
n
u 2



H1.
f /

�3
; @ui =@x

1
i D 0; X1-periodic

o
: (8.25)

The space of functions .H1.
f //
3 is a subspace of the Hilbert space .L2.
f //

3,
and we introduce an L2-inner product

˝�; �˛2 as

˝
f; g

˛ D
Z


1

f .x1/ g.x1/ dx1:

Let us assume that wi D vki in (8.24) under the microscale incompressibility
condition (8.21), and we obtain

�

�� @vki
@x1j

;
@vki
@x1j

�

C
D
ıki; vki

E
D
Z


1

�

�� @vki
@x1j

@vki
@x1j

C ıkiv
k
i

�

dx1 D 0: (8.26)

Equation 8.26 shows that vji is symmetric, which results in the symmetry and
positive definiteness of Kji :

vji D vij ; Kj i D Kij ; Kij �i �j � �i �i 8�: (8.27)

By averaging (8.17) in the micro-domain, the second term of the l.h.s. vanishes
because of the periodic boundary condition in the micro-domain; substituting

2The space of functions .H1.
f //
3 implies that a function f 2 .H1.
f //

3 and its first order
differential are bounded: ˝

f; f
˛C ˝r f; r f ˛ < C1:

Details are given in, e.g., Sanchez-Palencia (1980).
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Darcy’s law (8.22) into the averaged (8.17), we obtain the following homogenized
seepage equation, which gives the macroscale incompressibility condition:

@Qv0i
@x0i

D 0 ) � @

@x0i

�

�Kji

�
@p0.x0/

@x0j
� fj .x

0/


�

D 0: (8.28)

The true velocity and pressure are given in their first order approximation as

v"i .x
0;x1/ ' "2v0i .x

0;x1/; p".x0/ ' p0.x0/: (8.29)

Thus by applying the HA, we can obtain the true distributions of velocity and
pressure.

The conventional theory of soil mechanics states that Darcy’s law is introduced
as

Qv�
i D �K�

ij

@�

@x0j
; � D p

�g
C � (8.30)

where � is the total head, p=�g is the pressure head, � is the elevation head, � is the
mass density of the fluid, and g is the gravitational constant. K�

ij of (8.30) is here
referred to as the C-permeability, and if we recall the relationship

Qv�
i D Qv"i ' "2Qv0i ;

we have the following relationship between the HA-permeability and the
C-permeability:

K�
ij D "2�gKij : (8.31)

8.2.2 Analytical Solution for a Microscale Poiseulle Flow

A pure smectitic clay consists of stacks of clay minerals such as montmorillonite
or beidellite. One mineral is a platelet of about 100 � 100 � 1 nm, and several
crystals stack parallelly as shown in Fig. 1.7. Keeping this fact in mind, we consider
a microscale structure, i.e., a unit cell, with flow between two parallel platelets
as shown in Fig. 8.2c. If the viscosity � of the fluid is constant, the solutions of
microscale equations (8.20) and (8.21) are given by

v11 D 1

8�



d2 � 4.x12/

2
�
; p1 D C1; p2 D x12 C C2

where C1 and C2 are constants, and other characteristic functions are null. Thus the
HA-permeability can be calculated as

K11 D d3

12�X1
2

: (8.32)
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Fig. 8.2 Multiscale structures of pure smectitic clay

If we use the values of the water viscosity �D 0:8� 10�3 Pa�s at temperature
300 K, and the geometry of a unit cell X1

1 D 100 nm, X1
2 D 0:02 nm, d D 1 nm,

"D 10�5, we obtain the HA-permeability as K11 D 5:208 � 10�4 s cm3/g. Since
the density of water is �D 0:99651Mg/m3, the C-permeability (8.23) is K�

11 D
5:086 � 10�11 cm/s.

As shown in Fig. 8.2b, the stacks of clay minerals are randomly distributed in
most cases, and then the permeability is isotropic. From (8.31) and (8.32) we can
assume that the permeability is proportional to "2d2, since d is the same dimension
as X1

2 . The permeability of clay is extremely small, since the value "2d2 is very
small. Note that this is the case if the viscosity � is constant. However, by MD
simulations we know that the viscosity � varies widely in the neighborhood of the
smectitic clay surface.

8.2.3 Finite Element Analysis for the Mass Conservation
Equation in the Micro-domain

The major mineral of bentonite is a smectitic clay (see Fig. 1.7). Since the surface
of smectitic clay is negatively charged, the surface molecules of interlayer water
will exhibit different characteristics in diffusion and viscosity from that of normal
water. The swelling property of beidellite, which is calculated by a Molecular
Dynamic (MD) simulation is given in Figs. 8.3 and 8.4 (see Kawamura and Ichikawa
2001). Distributions of self-diffusivity and viscosity of water in the neighborhood
of the clay surface are shown in Fig. 8.5; the viscosity of water becomes extremely
high, which, together with the size effect described in Sect. 8.2.2, leads to the low
permeability of bentonite.

When the viscosity � is distributed inhomogeneously, an analytical solution of
the microscale equations (8.20) and (8.21) is not possible; we therefore perform a
finite element calculation. We first give a penalized weak form of (8.20) with the
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Fig. 8.3 Snapshots of hydrated beidellite calculated using an MD simulation (Courtesy of
Prof. K. Kawamura)

Fig. 8.4 Swelling property of bentonite: � calculated using an MD simulation for beidellite, 	
experiments for Wyoming clay (Courtesy of Prof. K. Kawamura)
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Fig. 8.5 Water properties in the neighborhood of a beidellite surface (Courtesy of Prof. K. Kawa-
mura)

incommpressibility condition (8.21) as follows

Z


f

�
@vki
@x1j

@wki
@x1j

dx1 C 1

�

Z


f

@vki
@x1i

@wkj
@x1j

dx1 �
Z


f

ıik wki dx
1 D 0

8wki .w
k
i D 0 on �/ (8.33)

where � .0 < � 
 1/ is a penalty constant, and � is a solid/fluid interface in the
micro-domain.
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We next introduce finite element interpolations for vki and wki using the shape
functionsˆr :

vki Š
mX

rD1
ˆr V

k
ir ; wki Š

mX

sD1
ˆs ıV

k
is (8.34)

where V k
ir and ıV k

is are nodal vectors corresponding to vki and wki . By substituting
(8.34) into (8.33), we have

mX

rD1

mX

sD1
ıV k

is .K
V
rsV

k
ir CKVP

rsj iV
k
jr / D

mX

rD1
ıV k

isF
k
is; (8.35)

KV
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�
@ˆr

@x1j

@ˆs

@x1j
dx1; KVP

rsj i D 1

�

Z


f

@ˆr

@x1j

@ˆs

@x1i
dx1; F k

is D
Z


f

ˆsıik dx
1:

(8.36)

Since ıV k
is are arbitrary in 
f , they can be omitted to obtain the following

simultaneous equation:

h
K v CK VP

in
V k
o

D
n
F k
o

.k D 1; 2; 3/: (8.37)

We solve this to obtain fV gk. In our analysis we set the penalty constant as
� D 10�1, and use a reduced integration technique of the Gaussian integral in order
to prevent over-constraining (see Hughes 1987).

8.2.4 Numerical Results of Seepage Analysis for Pure
Smectitic Clay

8.2.4.1 Flow Between Two Platelets Under Distributed Water Viscosity for
Pure Water

The water in the neighborhood of the smectitic clay surface is structured due to the
hydrogen bond, and the viscosity varies inversely with distance from the surface. In
this case we can apply the finite element method to solve the microscale equations
(8.20) and (8.21), as described previously.

Figure 8.6a shows the finite element mesh of the micro-domain. We use the
distribution of viscosity given by Fig. 8.5a, which is calculated by MD, and the
result for the distribution of the characteristic function v11 is shown in Fig. 8.6b. The
analytical solution under a constant viscosity is represented in Fig. 8.6c, which is
very different from Fig. 8.6b. This shows the strong influence of the surface on the
water viscosity.
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Fig. 8.6 Distribution of the characteristic velocity function v11 for pure water

Fig. 8.7 C-permeability for pure water as a function of distance between platelets

The C-permeability can then be calculated as a function of the distance between
two platelets (Fig. 8.7); it can clearly been seen that the permeability obtained from
the MD/HA procedure is considerably smaller than when using constant viscosity.
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FINITE ELEMENT MESH
d = 2 nm

Water

0.00 0.004.68 [× 10–14] 1.50 [× 10–13]

NaCl water

characteristic velocity (d= 2nm)

Fig. 8.8 Distribution of the characteristic velocity function v11 for pure water and salt water

Fig. 8.9 C-permeability for
salt water and pure water as a
function of distance between
platelets

8.2.4.2 Flow Between Two Platelets Under Distributed Water Viscosity for
Salt Water

By using the MD result for salt water (where the salt content is similar to that of the
sea water) shown in Fig. 8.5b, we can calculate the distribution of the characteristic
function v11 (Fig. 8.8) and the C-permeability (Fig. 8.9), which are compared with
those of pure water.
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Fig. 8.10 Distribution of the characteristic velocity function v11 of a beidellite stack with a
saturated density of 1.8 Mg/m3

8.2.4.3 Flow in a Stack of Clay Minerals with Pure Water

We now consider a more realistic case. Let the saturated density of pure smectitic
clay (for example, beidellite) be about 1.8 [Mg/m3]. The crystal density of the
beidellite determined from an MD simulation is found to be 2.901 [Mg/m3]. A
stack is assumed to consist of nine minerals. The molecular formula of the hydrated
beidellite is Na1=3Al2[Si11=3Al1=3]O10(OH)2 nH2O where n is the number of water
molecules in an interlayer space. We assume that n D 1; 3; 5, and the distance
between two minerals (i.e., the interlayer distance) can be obtained from Fig. 8.4;
from this, we can determine the volume of external water that exists on the outside
of the stack. For each case of n D 1; 3; 5 we calculate the characteristic functions
as shown in Fig. 8.10 (note that the scale is different in each case). Then we compute
the C-permeability as shown in Fig. 8.11. Based on numerous experimental results,
Pusch (1994) obtained the permeability characteristics of clays as a function of
density as shown in Fig. 8.12. We recall that the permeability of the saturated
smectitic clay is not only a function of the density but also of the ratio of interlayer
water to the external water, which indicates that there exists a distribution of
permeability for the same density. The range of permeability given in Fig. 8.12 with
a saturated density of 1.8 Mg/m3 corresponds well to our calculated results, which
were obtained using the MD/HA procedure.

8.2.4.4 Flow in a Stack of Clay Minerals with Salt Water

The property of viscosity distribution for salt water, which was obtained using MD
(Fig. 8.5b) is used to calculate the characteristic function of HA. The characteristic
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Fig. 8.11 Hydraulic
conductivity of a beidellite
stack with a saturated density
of 1.8 Mg/m3
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Fig. 8.12 Hydraulic conductivity for several pure clays (Pusch 1994)

function v11 for the beidellite stack with a saturated density of 1.8 Mg/m3 is shown
in Fig. 8.13 for cases of both pure water and salt water. The C-permeability of
a beidellite stack for salt water is shown in Fig. 8.14, and is dependent on the
molecular number of the interlayer water.

8.2.5 Three-dimensional Seepage Analysis of Sand

8.2.5.1 Permeability by Homogenization Analysis

We consider a simple geometrical model of sand in the micro-domain as shown in
Fig. 8.15, and apply the HA.

As described previously, the permeability calculated by the HA is written as
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Fig. 8.13 Distribution of the characteristic velocity function v11 of a beidellite stack of saturated
density 1.8 Mg/m3: comparison of pure water and salt water

Fig. 8.14 C-permeability of
a beidellite stack of saturated
density 1.8 Mg/m3:
comparison between results
for pure water and for salt
water

K�
ij D "2�gKij ; Kij D 1

j
1j
Z


1

vij dx
1

where K�
ij is the C-permeability, and Kij is the H-permeability. Since it is difficult

to obtain an analytical solution for this problem, we apply a finite element
approximation.
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Fig. 8.15 A micro-domain model of sand and a unit cell

8.2.5.2 Emperical Formulae and HA-Calculated Values

Several empirical formulae were proposed for sand, which are given as follows:

Hazen (Hazen 1892): k D CK.0:7C 0:03T /D2
w;

Terzaghi (Terzaghi and Peck 1964): k D Ct

�

�
n � 0:13
3
p
1 � n

�2
D2
10;

Zunker (Zunker 1930): k D Cz

�

�
n

1 � n
�2
D2

w;

Kozeny-Donat (Kozeny 1927; Donat 1929): k D Ck

�

�
n3

.1 � n/2

�2
D2

w

where CK; Ct ; Cz; Ck are empirical constants, T is the temperature, Dw is the
average grain size, D10 is the effective grain size, n is the porosity, and � is the
dynamic viscosity of water. It should be noted that the permeability k increases
with porosity n, it increases with the square of the grain size D10 or Dw (which
relates to the pore size), and it increases inversely with the fluid viscosity �. These
experimental observations are schematically shown in Fig. 8.16.

In Fig. 8.17 we show the HA-calculated results (�) using the regression formula
with a viscosity � D 1:14 � 10�3 Pa�s (water at T D 15ıC). A comparison with
Fig. 8.16 indicates that both are reconcilable.

In the empirical formulae, the permeability is proportional to the porosity and
inversely proportional to the viscosity. We validate this through the HA calculation
by changing the porosity n and the viscosity �. Figures 8.18–8.20 illustrate the
results for viscosity changes at T D 10; 20 and 30ıC respectively, and show good
agreement between the HA results and the empirical relationships.
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Fig. 8.16 Hydraulic conductivity of sand with various grain sizes (Kubota et al. 1976)

8.3 A Permeability Theory for Multiscale Porous Media

We can extend the two-scale HA theory to a multiscale porous medium, which is
schematically shown in Fig. 8.21 where
f is the fluid phase,
s is the solid phase,

sf is the mixture phase of fluid and solid (i.e., a mixture of stacks of beidellite and
fluid) in the meso-domain, �sf is the solid/fluid interface, and �f is the periodic
boundary for the fluid phase.

The three scales are as follows: the clay mineral is the microscale medium, which
has a thickness of 10�9 m and a width of about 10�7 m; the quartz grain, which
constitutes the mesoscale, has dimensions of 10�4–10�5 m; the triaxial specimen
used in the experiments has dimensions 10�1 m. Considering these scales, the
parameter " for a smectitic bentonite is about 10�4. Then we can introduce the
following relations between the coordinate systems:

x1 D x0

"
; x2 D x1

"
: (8.38)
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Fig. 8.17 HA-calculated
hydraulic conductivity (
)
and the regression line
(e D 0:54; T D 15ıC)

These relations are approximate; however, if the size of each domain is widely
different, we need to introduce another form. The size of a unit cell of the meso-
domain is jX 1j D "�1jX 2j, and the size of a unit cell of the micro-domain is jX2j.

Since we introduce the multiscale systems x0, x1 and x2, the original coordinates
should be changed to

x D x.x0;x1;x2/; (8.39)

and the differentiation is transformed to

@

@xi
D @

@x0i
C 1

"

@

@x1i
C 1

"2
@

@x2i
: (8.40)

8.3.1 Multiscale Permeability Theory

As mentioned previously, the flow field of water in a porous medium can be
represented by Stokes’ equation (8.3).

We introduce perturbations of the velocity v"i and the pressure p" such that (8.9)
and (8.10) now become

v".x/ D "4v0.x0;x1;x2/C "5v1.x0;x1;x2/C "6v2.x0;x1;x2/C � � � ; (8.41)

p".x/ D p0.x0/C "p1.x0;x1;x2/C "2p2.x0;x1;x2/C � � � (8.42)

where v˛.x0;x1;x2/, p˛.x0;x1;x2/ (˛D0; 1; : : : ) are X1-/X2-periodic functions:
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Fig. 8.18 Hydraulic conductivity by HA and empirical formulae: T D10ıC

v˛.x0;x1;x2/ D v˛.x0;x1 CX 1;x2/; v˛.x0;x1;x2/ D v˛.x0;x1;x2 CX 2/

p˛.x0;x1;x2/ D p˛.x0;x1 CX 1;x2/; p˛.x0;x1;x2/ D p˛.x0;x1;x2 CX 2/:

The reason why the perturbation of v".x/ starts with a "4-term is to ensure reduction
to the corresponding Stokes’ equation in the micro-domain as a microscale equation
(to be discussed later). We assume that the first-order term of pressure p0 is a
function of only the macroscale coordinate system x0.

By substituting (8.40), (8.41) and (8.42) into (8.1), we have



8.3 A Permeability Theory for Multiscale Porous Media 233

Fig. 8.19 Hydraulic conductivity by HA and empirical formulae: T D 20ıC

�"�2 @p0

@x2i
� "�1

�
@p0

@x1i
C @p1

@x2i

�

�
�
@p0

@x0i
C @p1

@x1i
C @p2

@x2i

�

C � � �

C @

@x2j

�

�
@v0i
@x2j

�

C"
"
@

@x1j

�

�
@v0i
@x2i

�

C @

@x2j

(

�

�
@v0i
@x1j

C @v1i
@x2j

�)#

C � � � C fiD0;

and as " ! 0, we obtain the following:
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Fig. 8.20 Hydraulic conductivity by HA and empirical formulae: T D30ıC

"�2-term:
@p0

@x2i
D 0 (8.43)

"�1-term:
@p0

@x1i
C @p1

@x2i
D 0 (8.44)

"0-term:
@

@x2j

�

�
@v0i
@x2j

�

� @p2

@x2i
D @p0

@x0i
C @p1

@x1i
� fi (8.45)
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Fig. 8.21 Multiscale problem for porous media

Since p0 is a function of only x0, (8.43) is automatically satisfied. By substituting
(8.43) into (8.44), we have

p1 D p1.x0;x1/: (8.46)

The r.h.s. terms of (8.45) are functions of x0 and x1, since fi is a function of only
x0. Thus we can introduce normalized characteristic functions vki .x

2/ and pk.x2/
such that

v0i D �
�
@p0

@x0k
C @p1

@x1k
� fk

�

vki .x
2/ (8.47)

p2 D �
�
@p0

@x0k
C @p1

@x1k
� fk

�

pk2 .x
2/ (8.48)

where vki .x
2/ and pk2 .x

2/ are referred to as the velocity characteristic function and
the pressure characteristic function. By substituting (8.47) and (8.48) into (8.45),
we obtain the following microscale Stokes’ equation:

@

@x2j

�

�
@vki
@x2j

�

� @pk2
@x2i

C ıki D 0 in 
2: (8.49)

Under the transformation (8.40) we substitute the perturbation (8.41) into the
incompressibility condition (8.2), and obtain

@v"i
@xi

D "2
@v0i
@x2i

C "3
�
@v0i
@x1i

C @v1i
@x2i

�

C "4
�
@v0i
@x0i

C @v1i
@x1i

C @v2i
@x2i

�

C � � � : D 0
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Since each term should correspond to zero, we have

"2-term:
@v0i
@x2i

D 0 (8.50)

"3-term:
@v0i
@x1i

C @v1i
@x2i

D 0 (8.51)

"4-term:
@v0i
@x0i

C @v1i
@x1i

C @v2i
@x2i

D 0: (8.52)

By substituting the characteristic function (8.47) into (8.50), we obtain the following
microscale incompressibility condition:

@vki
@x2i

D 0 in 
2: (8.53)

Under the X2-periodicity condition we can solve the microscale equations (8.49)
and (8.53), and obtain the characteristic functions vki .x

2/, pk2 .x
2/.

If we introduce an integration average
˝�˛
2

in the macro-domain 
2 for the

characteristic function vji , we have the HA-meso-permeabilityK2
j i as

K2
j i D

D
vji

E

2
D 1

j
2j
Z


2

vji dx
2: (8.54)

Let us introduce a weak form of the microscale Stokes’ equation (8.49) as

�

�� @vki
@x2j

C pk2 ıij ;
@wi
@x2j

�

C
D
ıki ; wi

E
D 0; 8w 2 VX2 (8.55)

where, similar to (8.25), VX2 is defined as

VX2 D
n
u 2



H1.
2f /

�3
; @ui =@x

2
i D 0; X2-periodic

o
:

If we set wi D vki in (8.55) and take into account the microscale incompressibility
condition (8.53), we obtain

�

�� @vki
@x2j

;
@vki
@x2j

�

C
D
ıki ; vki

E
D 0: (8.56)

The result (8.56) implies that vji is symmetric, and so is K2
j i , which is positive

definite in the sense that
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vji D vij ; K2
j i D K2

ij ; K2
ij �i �j � �i �i 8�: (8.57)

By introducing integral averaging
˝�˛
2

in the micro-domain for (8.47), we have

D
v0i
E

2
D �K2

j i

�
@p0

@x0j
� fj

�

� 1

j
2j
Z


2

@p1

@x1j
vji dx

2

D �K2
j i

�
@p0

@x0j
� fj

�

� 1

j
2j
Z

�2

p1vji nj ds
2 C 1

j
2j
Z


2

p1
@vji
@x1j

dx2

where the second term of the r.h.s. disappears because of the periodicity condition,
and the third term of the r.h.s. also disappears because of the symmetry of vji and the
incompressibility condition. Thus we obtain the following mesoscale Darcy’s law:

D
v0i
E

2
D �K2

j i

�
@p0

@x0j
� fj

�

: (8.58)

By introducing integral averaging
˝�˛
2

in the micro-domain for (8.52) and setting
the contribution from the periodic terms to zero, we have

� @

@x0i

�

K2
j i

�
@p0

@x0j
� fj

�


C @

@x1i

D
v1i
E

2
D 0:

Furthermore, if we introduce an integral averaging
˝�˛
1

in the micro-domain
1, we
obtain the following macroscale seepage equation:

� @

@x0i

�

Kji

�
@p0

@x0j
� fj

�


D 0 in 
0 (8.59)

where the HA-macro-permeabilityKji is defined as

Kji D
D
K2
j i

E

1
D 1

j
1j
Z


1

K2
j i dx

1; (8.60)

and the macroscale Darcy’s law is given as

Qv0i D
DD

v0i
E

2

E

1
D �Kji

�
@p0

@x0j
� fj

�

(8.61)

where Qv0i is the macro-averaging value of v0i .
The pressure p" and velocity v"i are approximated as

v"i .x/ ' "4v0i .x
0;x1;x2/; p".x/ ' p0.x0/: (8.62)
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In order to solve the multiscale HA seepage problem, we proceed as follows: First
we solve the microscale equations (8.49) and (8.53), and obtain the characteristic
functions vki and pk . We next determine the permeabilities K2

ij and Kij in the
meso-domain and macro-domain using (8.54) and (8.60). Then we can solve the
macroscale equation (8.59), and obtain the pressure p0. By substituting these into
(8.62), we can determine the velocity and pressure fields.

In geotechnical engineering, we commonly use the empirical form of Darcy’s
law:

Qv�
i D �K�

ij

@�

@xj
; � D p

�g
C � (8.63)

where Qv�
i is the mean velocity, � is the total head, � is the elevation head, � is

the mass density of the fluid, which is assumed to be constant because of the
incompressibility of the fluid, and g is the gravitational constant. By comparing
(8.63) with (8.61) and (8.62), we obtain the following relationship:

Qv�
i D

DD
v"i
E

2

E

1
' "4Qv0i : (8.64)

We can therefore see that the HA-permeabilityKij is related to the C-permeability
K�
ij as

K�
ij D "4� gKij : (8.65)

Once again it should be noted that the velocity v"i is sensitive to the sizes of the
mesoscale and microscale grains, whereas p" is relatively insensitive to these scales.

8.3.2 Seepage Analysis of Bentonite

As described previously, the viscosity of water in the interlayer space of smectite
clay stacks is strictly influenced by the processes at the clay surface. If the viscosity
is location-dependent, the seepage problem is usually not solvable through an
analytical technique. In this case, we solve the microscale equations (8.49) and
(8.53) using a finite element method, and determine the HA-permeability Kij and
C-permeabilityK�

ij .
The bentonite analysed here is Kunigel V1 R�, which is a candidate buffer material

for the Japanese high-level nuclear waste management program. This bentonite is
made up of 50% smectite minerals by weight, while the remainder is mainly grains
of quartz. The intrinsic mass density of a clay mineral is almost the same as that for
quartz, which is about 2.7 Mg/m3, and the porosity of Kunigel V1 R� at a dry density
of 1.8 Mg/m3 is approximately one-third (i.e., the pore ratio e D 0:5).

From the measured data of the quartz grains, we can see that the diameter varies
from about 5–100�m. Based on the peak value of the data and the fact that the
permeability characteristics are mainly controlled by smaller grains, we assume
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Fig. 8.22 Unit cell of a clay
stack in the micro-domain for
Kunigel V1 R�

Fig. 8.23 C-permeability
(i.e., hydraulic conductivity)
of Kunigel V1 R� calculated
by multiscale HA for pure
water and salt water

that the quartz grains are approximately 15�m, and the size of the meso-domain
is 45�m.

One crystal of the smectite clay is a platelet of about 100 � 100 � 1 nm, as
mentioned previously, and several crystals form a stack. Here we assume that six
crystals form a stack. The interlayer distance is 0.56 nm, which corresponds to the
state of hydration by two water layers. The distance between stacks, shown as X
in Fig. 8.22, is determined by the given saturated density of the bentonite, and if
the distance X becomes smaller than 0.56 nm, we assume that both X and the
interlayer distance of the stack are equally reduced. Since the smectite mineral is
very thin, one of the micro-domains is pseudo-one-dimensional, which represents
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the clay stack, and another micro-domain is fully occupied by a quartz crystal, which
is impermeable. Since we assume that the stacks of clays are randomly distributed
in their direction, we introduce an isotropic HA-meso-permeability K2 by setting
K2 D K2

11=3 where K2
11 is calculated directly using (8.54).

In Fig. 8.23 we show the results for C-permeability using the distribution of
viscosity obtained by MD (Fig. 8.6), for pure water and for salt water, as a function
of the pore ratio e. We observe that by increasing the density (i.e., decreasing e), the
permeability decreases rapidly, and the permeability for salt water is larger than that
for pure water.



Chapter 9
Homogenization Analysis of Diffusion in Porous
Media

We examine the problem of diffusion in a porous medium using a homogenization
analysis (HA). Diffusion problems have important applications in environmental
geosciences. We clarify the mechanism of diffusion, convective transport and
adsorption in porous media at both the microscale and macroscale levels. Attention
is particularly focused on diffusion processes in bentonite, which is an engineered
geological barrier to be used to buffer the transport of radionuclides from deep
geologic repositories.

9.1 Micro-inhomogeneous Porous Media and Diffusion
Problems

As mentioned in Sect. 5.5, in the classical diffusion theory for a porous medium,
adsorption is described by a distribution coefficient Kd resulting from the transfer
of the species from the fluid phase to the solid phase through the linearized equation
of equilibrium adsorption isotherm (5.113).

We conjecture that the actual adsorption mechanism results in a ‘source’ term
rather than a ‘storage’ that provides a coefficient to the term @c=@t . This perspec-
tive, however, is relevant only if the theory is developed through a formulation
that couples the microscale phenomena with the macroscale behavior. This is
because in the classical theory, it is simple to evaluate an experimental result
macroscopically due to adsorption as Kd . Here we will develop an alternative
adsorption/desorption/diffusion theory, which is based on MD (molecular dynam-
ics) and HA (homogenization analysis).

Let us consider the problem of the diffusion of a multi-component fluid (see
e.g., Drew and Passman 1998) in a non-deformable porous medium which is
saturated with the solution. Note that in ensuring adsorption, desorption is also taken
into account unless otherwise specified. Referring to (3.246), the mass conservation
equation for the multi-component fluid is

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 9, © Springer-Verlag Berlin Heidelberg 2012
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Z


f

�
@.�c˛/

@t
C @

@xi
.�c˛v˛i / � 	 �̨

�

dv �
Z


ad

	ad˛ dv D 0 (9.1)

where c˛ is the mass concentration of the ˛-th component, � is the mean mass
density defined by (3.242), v˛ is the particle velocity of the ˛-th component, 	 �̨ is
the source term due to, e.g., chemical reaction,
ad is the microscale domain where
some chemical species are adsorbed or desorbed, 	ad˛ is the source term due to the
adsorption in the domain
ad (positive in adsorption and negative in desorption).

The mean velocity v of the fluid mixture is defined by (3.251), and the diffusing
mass fluxes j ˛ are introduced by (3.256) as follows:

v D 1

�

n�
X

˛D1
�˛v˛ D

n�
X

˛D1
c˛v˛; (9.2)

j ˛ D �˛v˛ D �˛.v˛ � v/: (9.3)

By applying Fick’s law to the second term on the l.h.s. of (9.1), we have

Z


f

�
@.�c˛/

@t
C vi

@.�c˛/

@xi
� @

@xi

� n�
X

ˇD1
�D

˛ˇ
ij

@cˇ

@xj

�

� 	 �̨
�

dv �
Z


ad

	ad˛ dv D 0:

(9.4)
Thus we obtain the following advective transport equation in the domain
f :

@.�c˛/

@t
C vi

@.�c˛/

@xi
� @

@xi

� n�
X

ˇD1
�D

˛ˇ
ij

@cˇ

@xj

�

� 	˛ D 0 in 
f : (9.5)

where

	˛ D 	 �̨ C 	ad˛ �ad ; (9.6)

�ad D
(
1 if x 2 
ad

0 if x … 
ad

: (9.7)

We consider the problem of edge adsorption, which can occur at the edges of
clay minerals and is schematically shown in Fig. 9.1. Considering molecular based
simulations, we can establish that for smectitic clay minerals, cations are adsorbed
at the edges, and they diffuse into the interlayer space forming a hydrated structure,
which can be different for each cation species.

At the edge region of the clay
ad we can consider a condition for adsorption of
the species ˛ in a multi-component fluid with n�-species in the following form:
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Fig. 9.1 Schematic micro-structure of adsorption/desorption of clay edges

	ad˛ D

8
ˆ̂
<

ˆ̂
:

n�
X

ˇD1
s˛ˇ.c

l
ˇ � cˇ/; if cˇ < clˇ

0; if cˇ � clˇ

in 
ad (9.8)

where s˛ˇ is an adsorption coefficient of species ˇ related to species ˛, which can
be a function of the hydrogen-ion concentration pH, etc., and clˇ denotes the limit
value of adsorption, which is also a function of pH, etc.

On the interlayer surface �i we can observe both adsorption (mainly physisorp-
tion) and retardation of diffusion, which is not accompanied by adsorption. If there
is adsorption, we can introduce the same condition as imposed on the edge domain

ad . If not, we have 	ad˛ D 0.

In the ensuring we assume that the interaction between species ˛ and ˇ is
reciprocal, i.e. D˛ˇ

ij D Dij ı˛ˇ where ı˛ˇ is Kronecker’s delta. For simplicity we
treat only one species, and set the concentration as c" D c˛, the source as �f " D 	˛
where the superscript " implies that this value is rapidly changed in a scale of the
micro-domain as mentioned previously. Then, if we assume incompressibility of
fluid (� D constant, @v"i =@xiD 0), we have the following initial-boundary value
problem governing the advective-diffusive movement of the species:

Governing equation

@c"

@t
C v"j

@c"

@xj
� @

@xi

�

D"
ij

@c"

@xj

�

� f " D 0 in 
 (9.9)

Boundary conditions

Dirichlet boundary: c".x; t/ D Nc".t/ on @
c (9.10)

Neumann boundary: �D"
ij

@c"

@xj
ni D Nq.t/ on @
q (9.11)
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Adsorption/desorption condition in the micro-domain

	ad˛ D
(
s.cl � c"/; if c" < cl

0; if c" � cl
in 
ad (9.12)

Initial condition

c".x; tDt0/ D c"0.x/ (9.13)

9.2 Diffusion Theory for Two-scale Porous Media

Referring to Fig. 8.1, we consider a diffusion problem for a two-scale porous
medium in which 
f is the fluid-phase domain,
s is the solid-phase domain, � is
the solid/fluid interface, and �f is the periodic boundary of the fluid-phase in the
micro-domain.

Following the HA theory we introduce the coordinate systems x0 and x1 for the
macro-domain and the micro-domain, respectively, and we have

x D x.x0;x1/; x1 D x0

"
(9.14)

@

@xi
D @

@x0i
C 1

"

@

@x1i
(9.15)

where ".
1/ is a scaling parameter.

9.2.1 HA for Diffusion Problems in Porous Media

We introduce a perturbation scheme for the concentration c".x; t/ as

c".x; t/ D c0.x0;x1; t/C " c1.x0;x1; t/C "2c2.x0;x1; t/C � � � (9.16)

where ci is an X1-periodic function in the sense that

ci .x0;x1 CX 1; t/ D ci .x0;x1; t/ (9.17)

where X1
i is the size of a unit cell in the x1i -direction.

In addition to the conventional source term f 0.x0/, we introduce the following
micro-sorption term �i .x

1/ in order to represent microscale adsorption/desorption
phenomena in the micro-domain
ad :
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f " D f 0.x0/C "�1	ad .x1; t/; 	ad .x1; t/ D �i .x
1/
@c0

@x0i
: (9.18)

From (9.15) and (9.16) we have the spatial derivative of the concentration c" as
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C 1
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C "

�
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C @c2

@x1j

�

C � � �

The governing equation (9.9) can be represented in the expanded form
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�
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�
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n
� � �
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�f 0.x0/ � 1

"
�i .x

1/
@c0

@x0i
D 0: (9.19)

Considering terms in the series, we have the following relations:

For terms O."�2):
@

@x1i

�

D"
ij

@c0

@x1j

�

D 0; (9.20)

which implies that
c0.x0;x1; t/ D c0.x0; t/: (9.21)

That is, the first term of the perturbation c0 is not a function of the micro-domain
coordinates x1, but the macro-domain coordinates x0.

For terms O."�1): Microscale equation

v"j
@c0

@x1j
� @

@x0i

�

D"
ij

@c0

@x1j

�

� @

@x1i

�

D"
ij

�
@c0

@x0j
C @c1
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�


� �i .x
1/
@c0

@x0i
D 0: (9.22)

By substituting (9.21) into (9.22), we have
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@

@x1i

�

D"
ij

�
@c0

@x0j
C @c1

@x1j

�


C �i .x
1/
@c0

@x0i
D 0: (9.23)

Since c0.x0; t/ is constant in the micro-domain, we can normalize (9.23) by
@c0=@x0i to obtain

c1.x0;x1; t/ D �Nk
1 .x

1/
@c0.x0; t/

@x0k
C C1.x

0; t/ (9.24)

where Nk
1 is the characteristic function. By substituting (9.24) into (9.23), we have

�
@

@x1i

�

D"
ij

�

ıkj � @Nk
1

@x1j

�


C �k

�
@c0

@x0k
D 0

) @

@x1i

�

D"
ij

�

ıkj � @Nk
1

@x1j

��

C �k D 0: (9.25)

The result (9.25) is referred to as the microscale equation for the two-scale
diffusion problem in porous media. The boundary condition (9.25) is the X1-
periodic condition (9.17).

By taking into account the condition (9.17), we introduce a weak form of (9.25)
as follows:

Z


1

D"
ij

@N k
1

@x1j

@Vk

@x1i
dx1 �

Z


1

�

D"
ik

@Vk

@x1i
C �k Vk

�

dx1 D 0 (9.26)

where Vk.x1/ are arbitrary functions with the X1-periodic conditions. Thus the
microscale problem is reduced to the weak form problem (9.26), and we can obtain
the solution Nk

1 under the periodic condition (9.17). Note that if we consider
the adsorption/desorption condition (9.12) in the micro-domain, the microscale
equation (9.25) is not completely independent from the macroscale problem,
therefore we need to introduce an iteration procedure, which is treated later.

For terms O."0): Macroscale equation
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� f 0 D 0: (9.27)

When introducing a volume integral average in (9.27), the fourth term of the
l.h.s. can be reduced to a surface integral: i.e.,
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1D0 (9.28)

where j
1j is the volume of the unit cell; we used the conditions that c1 and c2 are
X1-periodic functions and that ni gives inverse values at both sides of a unit cell.
Thus from the volume integral average of (9.27), we have
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By substituting the characteristic function given by (9.24) into (9.29), we obtain

@c0
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C vHj

@c0

@x0j
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@x0i

�
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� f H D 0 (9.30)

DH
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dx1; (9.31)

vHj 	 1

j
1j
Z


1

v"k dx
1; f H 	 1

j
1j
Z


1

f 0dx1: (9.32)

The result (9.30) is the macroscale transport equation of the diffusion problem in
porous media, and DH

ij is the homogenized diffusion coefficient.
Under the boundary conditions (9.10) and (9.11) we can develop a weak form of

(9.30) as

Z


0

@c0
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wdx0 C
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f Hwdx0

D
Z

@
q

Nq wds0 8w.x0; t/ .w D 0 on @
c/: (9.33)

Thus the macroscale equation in the macro-domain is reduced to the problem of
obtaining c0 by solving (9.33) under the homogenizedDH

ij , vHj and f H , which are
given by (9.31) and (9.32). The local distribution of concentration is calculated as

c".x; t/ ' c0.x0; t/C "c1.x0;x1; t/ D c0.x0; t/ � "N k
1 .x

1/
@c0.x0; t/

@x0k
: (9.34)
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9.2.2 Simulation of a Through-diffusion Test

In order to verify the validity of the HA theory, we compare the numerical work
with the result of a through-diffusion test for a pure smectitic clay. The HA macro-
model and micro-model, i.e., the finite elements in the macro-domain and in the
micro-domain, are shown in Fig. 9.2.

We consider a diffusion/adsorption test of cesium (Cs), and the data provided
are as follows: The size of a clay platelet is 100 � 100 � 1. Based on experimental
data of Baeyens and Bradbury (1997) the cross-section area of clay edges, which
are adsorption sites, are assumed to be 35 m2/g. Since the atomic radius of cesium is
3.34 Å, and because of the monolayer adsorption, we set the layer thickness of the
edge domain where cesium ions are adsorbed as 0.67 nm. The maximum amount
of cesium adsorbed in this domain is 6.51 � 10�5 mol/g. The molecular number of
interlayer water is given as nD2:5. The diffusion coefficient of cesium ions in the
bulk water is 2�10�5 cm2/s, and in the interlayer water is 2:62�10�6 cm2/sec, which
is obtained from the MD simulation. The concentration of cesium at the upstream
boundary, i.e., the l.h.s. surface of Fig. 9.2 (Dirichlet boundary condition) is given
as: Case (1) 10�2 mol/l, Case (2) 10�3 mol/l and Case (3) 10�4 mol/l.

The calculated break-through curves for Case (1) at each point of the macro-
domain are shown in Fig. 9.3, where the curves corresponding to a situation without
adsorption are also presented. Similarly, the curves for Cases (2) and (3) are shown

Clay mineral

Fig. 9.2 Macro-model (a) and micro-model (b) of a through-diffusion test for a pure smectitic
clay
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Fig. 9.3 Break-through curves at each macro-domain point: Case (1)

Fig. 9.4 Break-through curves at each macro-domain point: Case (2)

in Figs. 9.4 and 9.5, respectively. We observe that in Case (1), where a higher
concentration is prescribed at the upstream side, the break-through curve rises at
the early stage, since the adsorbed edge domains are saturated relatively quickly,
while in Case (3), which has a lower concentration at the boundary, we observe a
delayed break-through curve. These are expected results.

The distribution of concentration in the micro-domain for Case (1) after a
sufficiently long elapsed time, is shown in Fig. 9.6. Similarly, the results for Cases
(2) and (3) are given in Figs. 9.7 and 9.8, respectively.
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Fig. 9.5 Break-through curves at each macro-domain point: Case (3)

Fig. 9.6 Distribution of concentration in the micro-model (1/4 domain): Case (1)

Fig. 9.7 Distribution of concentration in the micro-model (1/4 domain): Case (2)

9.2.3 HA Diffusion Equation with Higher Order Derivatives

In certain situations it is useful to have an approximation to the problem with
convection and adsorption in the micro-domain by including a term c2. If we take
the unknown c2 of (9.27), and substitute the characteristic function of (9.24), we
obtain the following higher (i.e., second) order microscale equation:
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Fig. 9.8 Distribution of concentration in the micro-model (1/4 domain): Case (3)
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We then set c2 as

c2.x0;x1; t/ D Nkl
21 .x
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whereNkl
21 .x

1/,Nk
22.x

1/,N23.x1/ andN24.x1/ are the characteristic functions with
respect to a small disturbance of the position in the micro-domain, with respect
to convection, time-dependence and adsorption, respectively, and Nc2.x0; t/ is an
integration constant.

Substituting (9.36) into (9.35), we derive a weak form as
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D 0: (9.37)

Since each term of (9.37) must be null because of the arbitrariness of c0, we obtain
the following equations for determiningNkl

21 .x
1/, Nk

22.x
1/, N23.x1/ and N24.x1/:
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where V.x1/ is an arbitrary X1-periodic function. From Onsager’s relationships
(Kondepudi and Prigogine 1998) it can be shown that the diffusion matrix is sym-
metric, and, in addition, the assumption of isotropy gives D"

ijDDıij . It should be

noted that if we substitute Nk
1 into (9.38), which is determined by (9.26), we obtain

Nkl
21 . Similarly, we can obtain Nkl

22 using (9.39). We also understand that (9.41)
involves the local adsorption term f ". Thus we can see that for the second order
microscale problem, (9.38)–(9.41) can be solved to obtain Nkl

21 , Nk
22, N23 and N24.

The diffusion problem with two scale domains including second order differen-
tials can be solved as follows:

1. Obtain the characteristic functionNk
l by solving (9.26).

2. Specify the homogenized diffusion coefficient DH
ij by substituting Nk

l into
(9.31).

3. Obtain c0 by solving the macroscale equation (9.33).
4. ObtainNkl

21 ; N
k
22; N23 andN24 by solving the second order microscale equations

(9.38)–(9.41).
5. The local distribution of concentration can be specified as follows:
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9.3 Diffusion Problem for Multiscale Porous Media

Bentonite is a composite material with micron sized grains, composed mainly of
quartz, and nanometer sized clay minerals as described previously. We present here
a multiscale HA theory for diffusion in such a composite porous medium.

We consider a material that has macro-/meso-/micro-structures as shown in
Fig. 8.21, where 
f and 
s are the domains of the fluid phase and solid phase,
respectively, �sf is the solid/fluid interface, �f is the periodic boundary of the fluid
phase, and 
sf is the mixture domain of smectite stacks and fluid in the meso-
domain,

Let x0, x1 and x2 be coordinate systems introduced in the macro-/meso-/micro-
domains, respectively. We consider a triaxial test on the typical bentonite of Japan,
Kunigel V1 R�, using a specimen of about 10�1 m in diameter, which is the macro-
domain, where the size of the quartz grains are about " D 10�4, which is the meso-
domain, and the size of clay stacks is about 10�8 m. Then we can set "D10�4, and
introduce the following relations:

x D x.x0;x1;x2/I x1 D x0

"
; x2 D x1

"
; (9.43)
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9.3.1 Multiscale HA for Diffusion Problems in Porous Media

Let us introduce a perturbation of c".x; t/ for the macro-/meso/micro-coordinate
systems x0, x1, x2 as

c".x; t/ D c0.x0; t/C "c1.x0;x1;x2; t/C "2c2.x0;x1;x2; t/C � � � (9.45)

where c˛ s ( ˛ D 0; 1; 2; : : :) are X1-/X2-periodic functions:

c˛.x0;x1;x2; t/ D c˛.x0;x1 CX 1;x2; t/;

c˛.x0;x1;x2; t/ D c˛.x0;x1;x2 CX 2; t/:

From (9.44) the differential of the concentration c" is given by
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Thus the governing equation (9.9) is transformed into
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Therefore, for each power series of " we obtain the following equations:

For terms O."�4):
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c0 is a function of only x0, thus (9.47) is automatically satisfied.

For terms O."�3): First order characteristic function
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The terms @c0=@x2j and @c0=@x1j are null, and c1 is a function of only x0 and x1.
This suggests that for c1 we can introduce the following first order characteristic
function Nk

1 .x
1/:

c1 D c1.x0;x1; t/ D �Nk
1 .x
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@c0.x0; t/

@x0k
C Nc1.x0; t/ (9.48)

where Nc1.x0; t/ is the integral constant.
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For terms O."�2): Second order characteristic function and microscale equation
Since c0 is a function of only x0 and c1 is a function of only x0 and x1, and we

have the following equation in the micro-domain:
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The term @c0=@x0j C @c1=@x1j is a function of only x0 and x1, therefore we

can introduce the second order characteristic function Nk
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where we have used (9.48). Then we have
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Substituting (9.51) into (9.49), we obtain the following microscale equation in the
micro-domain:
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It is clear that (9.52) can be solved under the X2-periodic boundary condition.

For terms O."�1): Mesoscale equation
As mentioned previously, c0 is a function of only x0 and c1 is a function of only x0

and x1; thus we have
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If we introduce an integral average
˝�˛
2

in the micro-domain to (9.53), then the last
term is reduced. By substituting (9.51) into this, we have the following mesoscale
equation under the X1-periodic condition:
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whereDH2
ik is the meso-diffusivity.



256 9 Homogenization Analysis of Diffusion in Porous Media

For terms O."0): Macroscale equation
Since c0 is a function of only x0 and c1 is a function of only x0 and x1, for the
terms "0 we introduce an integration average

˝�˛
2

in the micro-domain
2 under the
relation (9.51), and obtain
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Furthermore, we introduce an integration average
˝�˛
1

in the meso-domain 
1, and
obtain the following macroscale equation:
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where DH
il is the macro-diffusivity. We can solve the macroscale equation (9.58)

using the boundary conditions (9.10) and (9.11) and the initial condition (9.13).
We summarize the procedure to solve the diffusion problem of a multiscale

porous media using the HA method as follows:

1. Obtain the second order characteristic function Nk
2 by solving the microscale

equation (9.52) under the X2-periodic condition.
2. Determine the meso-diffusivity DH2

ik using (9.55), and obtain the first order
characteristic function Nk

1 by solving the mesoscale equation (9.54) under the
X1-periodic condition.

3. Determine the mesoscale velocity vH2k and the mesoscale source f H2 from (9.56).
4. Determine the macro-diffusivity DH

il , macro-velocity vHl , macro-source f H

by (9.59), and obtain c0 by solving the macroscale equation (9.58) under the
boundary conditions (9.10) and (9.11) and under the initial condition (9.13).

5. The first order approximation of the true concentration c" is obtained as follows:
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c".x; t/ ' c0.x0; t/C "c1.x0;x1; t/C "2c2.x0;x1;x2; t/
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2

�
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@x1k

�

@c0

@x0l
: (9.61)

9.4 Diffusivity of Compacted Bentonite Considering
Micro-structure

We can find many reports of diffusion experiments for bentonite (Gillham et al.
1983; Miyahara et al. 1991; Sato et al. 1992; Oscarson and Hume 1994; Sato and
Shibutani 1994; Kozaki et al. 1999). These types of experimental data of diffusion
and distribution coefficients will be used for the analysis of the long-term safety of
nuclear waste disposal facilities that use bentonite clay barriers. The data, however,
have not yet been estimated systematically in the sense of a theory of physical
chemistry; therefore it is necessary to re-assess these data not only by experiments
but also from the perspective of a molecular- and multiscale-based theory.

In this section we present the results of the MD/HA method for bentonite
diffusivity under the assumption of the periodic geometry of bentonite in the micro-
domain. That is, we provide the data of diffusivity of a micro-domain by MD,
then introduce a multiscale finite element method. Note that detailed results for this
section are given in Fujii (2002).

9.4.1 Experimental Data of Bentonite Diffusivity

Diffusion experiments of bentonite are classified into transient methods and steady-
state methods (Sato and Shibutani 1994; Kozaki et al. 1999).

A typical transient method is the in-diffusion method (i.e., concentration profile
method) shown in Fig. 9.9: After the species is allowed to diffuse into the one-
dimensional specimen, it is sliced into segments of approximate thickness of
0.5 � 1 mm, and the amount of the species in each slice is measured. The diffusivity
is then determined using this concentration profile. The diffusivity determined by
this method is referred to as the apparent diffusion coefficient, which is denoted
by Da.

A typical steady-state method is the through-diffusion method shown in
Fig. 9.10, where the concentration of species from the sampling cell is measured at
each time interval. At its steady-state the concentration is linearly increased, and the
time-rate corresponds to the mass flux, thus we obtain the diffusivity from the slope
of the mass flux. This diffusivity is referred to as the effective diffusion coefficient,
which is denoted by De .

The apparent values of the diffusion coefficient obtained by the in-diffusion
method are shown in Tables 9.1 and 9.2, and the effective diffusion coefficients
obtained by the through-diffusion method are shown in Table 9.3. The effective
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Fig. 9.9 Apparatus for the
in-diffusion test (Sato and
Shibutani 1994)

Fig. 9.10 Apparatus for the
through-diffusion test (Sato
and Shibutani 1994)

diffusion coefficients are in the range applicable to cations, neutral species and
anions. The reason may be that in the neighborhood of the clay surface the cations
are diffusing faster because of their surface diffusion characteristics, while the
anions diffuse more slowly because of their ion exclusion characteristics.

Table 9.1 shows the results for a refined bentonite (i.e., Kunipia F R�), and
Tables 9.2 and 9.3 the results for an unrefined bentonite (i.e., Kunigel V1 R�). The
chemical composition of these compounds was given in Table 1.1. By comparing
Tables 9.1 and 9.2 we can see that Kunipia F R�, which consists mainly of smectitic
clays, gives a lower value for the apparent diffusion coefficient than the Kunigel
V1 R�.

From Tables 9.2 and 9.3 we recognize a difference in the apparent diffusion
coefficient Da and the effective one De . It is known that both are represented in
terms of the diffusion coefficient in bulk water D0 as

Da D n

nC .1 � n/�Kd

ı

�
D0; (9.62)

De D n
ı

�
D0 (9.63)
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Table 9.1 Apparent diffusion coefficient in a refined bentonite (Kunipia F R�; Sato 1998)

Species Dry density [Mg/m3]

0.8 1.0 1.2 1.4 1.5 1.6 1.8 2.0

HTO 4.8E�10 1.8E�10 9.5E�11
90Sr 7.6E�12 7.6E�12 5.4E�12 4.3E�12
99Tc 1.3E�10 3.2E�11 1.2E�11 1.0E�11
129I 2.6E�10 8.5E�11 2.4E�11
137Cs 6.6E�12 4.8E�12 3.2E�12 2.2E�12 1.3E�12 7.9E�13 4.0E-13
237Np 5.0E�12 2.0E�12 1.0E�12 3.0E�13 2.0E�13 1.0E�13 3.0E�14
Unit: [m2/s]

Table 9.2 Apparent diffusion coefficient in an unrefined bentonite (Kunigel V1 R�; Sato 1998)

Species Dry density [Mg/m3]

0.8 1.0 1.4 1.6 1.8 2.0
HTO 9.9E�10 5.8E�10 4.2E�10 2.3E�10
99Tc 7.2E�10 4.7E�10 1.8E�10 1.2E�10 4.4E�11
137Cs 1.4E�11 7.8E�12 5.2E�12
237Np 7.0E�12 1.5E�12 2.0E�13

Unit: [m2/s]

where n is the porosity, � is the intrinsic mass density of the smectitic clay
(2.7 Mg/m3), ı is the constrictivity of pores, and � is the tortuosity. From (9.62) and
(9.63), we note that the apparent diffusion coefficient Da is related to the effective
oneDe as

Da D 1

nC .1 � n/�Kd

De: (9.64)

The apparent diffusion coefficient includes the term for the distribution coefficient
Kd ; that is, the apparent diffusion coefficient, which includes the effect of adsorp-
tion, represents the diffusivity in a simplified manner, whereas the effective diffusion
coefficient is not influenced by the adsorption.

Since tritium water HTO is not adsorptive (see later), we can set KdD0. Then
(9.64) is given as

Da D 1

n
De: (9.65)

9.4.2 Microscale Problem of HA for Bentonite

We present here the HA results for diffusion in bentonite and compare these with the
experimental results. For a pure smectitic bentonite, Kunipai F R�, we apply the two-
scale HA: By solving the microscale equation (9.26) using a finite element method
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Table 9.3 Effective diffusion coefficient in an unrefined bentonite (Kunigel V1 R�; Sato 1998)

Species Dry density [Mg/m3]

0.8 1.0 1.3 1.4 1.5 1.8 2.0

HTO 3.6E�10 1.4E�10 4.2E�11
5.6E�10 1.9E�10 5.1E�11

99Tc 4.4E�11 9.3E�12 1.4E�12
4.9E�11 1.9E�12

137Cs 8.6E�10 3.9E�10 2.5E�10 3.2E�11
1.6E�10 4.3E�11

237Np 1.2E�10 2.5E�11 2.5E�12

Unit: [m2/s]

Fig. 9.11 Unit cell for a pure
smectitic clay with eight
layers of clay minerals (Fujii
2002)

we obtain the homogenized diffusivity coefficient given by (9.31). For an unrefined
bentonite, Kunigel V1 R�, we apply the three-scale HA because it incorporates
quartz grains of about 10�m: By solving the microscale equation (9.52) and
the mesoscale equation (9.54) we obtain the homogenized diffusivity coefficient
given by (9.59). When solving the microscale equations in both cases, we use the
distributed viscosity characteristics, which are obtained from MD calculations.

9.4.2.1 Diffusion of Tritium in Pure Smectitic Bentonite

First we consider a pure smectitic bentonite, Kunipia F R�, which consists of stacks
of clay minerals including interlayer water, and external water. We assume a simple
stack with eight clay minerals in the micro-domain (Fig. 9.11). From MD results,
we know the diffusivity and viscosity as a function of the distance from the surface
of a clay mineral.

Tritium water HTO (3H2O) consists of a tritium atom, which is an isotope of
hydrogen, an oxygen atom and a normal hydrogen atom. The chemical property
is almost same as the normal water H2O, and in a bentonite saturated with normal



9.4 Diffusivity of Compacted Bentonite Considering Micro-structure 261

water, the tritium behaves as a non-adsorbed species. Tritium is a radioactive isotope
with a half-life of 12.33 years, and it can be used as a tracer for identifying the
diffusivity in bentonite because it is non-adsorptive. We can directly compare the
experimental results with the HA calculated ones. The properties used in the HA
calculation for a pure smectitic bentonite are given in Table 9.4.

The water in the pure smectitic bentonite is classified as interlayer water, which
exists in the interlayer space between the clay stacks, and external water, which
exists externally to the clay stacks. Both the physical and chemical properties of
each type of water are strongly affected by the charged state of the mineral surface,
and the interlayer water is also affected by the interlayer cations. In Fig. 9.12 we
show the distribution of the self-diffusion coefficient of water as a function of the
distance from the clay surface.

We assume that the profile of diffusivity of tritium water HTO is the same as
the normal water shown in Fig. 9.12; however, its diffusivity in the bulk water is
specified by experiments as 2:44 � 10�5 cm2/s at 25ıC (Klitzsche et al. 1976),
therefore the maximum value in Fig. 9.12 is replaced by this experimental value.
The diffusivity in the clay mineral is, of course, null.

In the unit cell model of HA, the distances between each clay mineral (i.e., the
interlayer distance) and between the two stacks (i.e., the thickness of external water)
strongly affects the calculated results. Note that the thickness of a clay mineral is

Table 9.4 Properties for HA
calculation for pure smectitic
bentonite (Fujii 2002)

Bentonite Kunipia F R�

Dry density 1.6, 2.0 (Mg/m3)
Porosity (dry density) 0.41(1.6), 0.26(2.0)
Saturation 100(%)
Temperature 25ıC
Species HTO (tritium water)
Interlayer water Normal water

0
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Fig. 9.12 Diffusivity of
interlayer water obtained by
MD (courtesy of
Prof. K. Kawamura)
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Table 9.5 HA calculated diffusivity of HTO in pure smectitic bentonite (Fujii 2002)

No. of Dry density [Mg/m3]
layers

1.6 2.0

Thick. ext. DiffusivityDH [m2/s] Thick. ext. DiffusivityDH [m2/s]
water water

Without With Without With
interlayer interlayer interlayer interlayer

dw[nm] diffusion diffusion dw[nm] diffusion diffusion

4 2.48 1:10 	 10�10 1:11 	 10�10 4.87 3:57 	 10�11 4:82	 10�11

6 3.54 1:42 	 10�10 1:52 	 10�10 6.96 4:94 	 10�11 6:25	 10�11

8 4.61 1:79 	 10�10 1:90 	 10�10 9.05 6:02 	 10�11 7:37	 10�11

10 5.67 2:07	 10�10 2:18 	 10�10 11.14 7:13 	 10�11 8:49	 10�11

For bulk water 3:31 	 10�10 2:11 	 10�10

diffusivity

Fig. 9.13 Diffusivity in pure
smectitic bentonite (Fujii
2002)

about 1 nm (Nakano 1991). The interlayer distance is determined by using the MD
results as a function of the interlayer water molecules n, and here we assume nD2. If
we specify the dry density and the number of minerals in a stack, we can determine
the thickness of external water dw.

We also assume that the stacks are randomly oriented; therefore for the homoge-
nized diffusivityDH

11 in the x1-direction of the quasi-one dimensional micro-domain
model, the macroscale diffusivity DH is assumed to be isotropic, given by
DHDDH

11=3.
We give the HA results in Table 9.5 and Fig. 9.13, which were calculated using

stack models with 4–10 clay layers in the micro-domain model Fig. 9.11, and the
properties given in Table 9.4. Note that if the diffusivity is constant and the same
as for the bulk water (2:44 � 10�5 cm2/s), the homogenized diffusivity DH is the
same for all cases, which is independent of the number of minerals in a stack and the
thickness of the external water. Thus the profile of the diffusivity in the interlayer
space strongly influences the macroscale diffusivity.
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Fig. 9.14 Meso-/micro-models of the multiscale HA (Fujii 2002)

Since the interlayer distance is small, the water in that space is strongly affected
by the surface of the clay minerals. Thus, the diffusivity in that space becomes very
small, which is the same mechanism shown for permeability (Chap. 8). In order to
verify this fact we calculated the results for both cases (i.e., with/without diffusion
in the interlayer space) and these are shown in Table 9.5. The difference between
both cases is significant, therefore the major transport path is in the external water.

9.4.2.2 Multiscale HA for Bentonite

We use a three-scale HA for Kunigel V1 R� with the same properties as indicated in
Table 9.4. Since Kunigel V1 R� includes the same percent for the quartz grains and
the smectitic clays by weight, this can be simplified to give 2/3 by volume as stacks
and 1/3 by volume of quartz grains. The schematic diagram shown in Fig. 9.14a is
the unit cell in the meso-domain, which consists of a domain of quartz and a mixture
of stacks and external water. The diffusivity in the quartz is null. The unit cell in the
micro-domain shown in Fig. 9.14b is the same as that for the pure smectitic clay.
We assume that the pore structure of Kunigel V1 R� is intensively represented in the
micro-domain, and there exist only quartz grains and stacks in the meso-domain.

We calculate the model of Kunigel V1 R� described above. The number of layers
of clay minerals in a one stack is given as 4–10, the same as for the case of the pure
smectite, Kunipia F R�. The results are shown in Table 9.6 and Fig. 9.15 together with
the results for Kunipia F R�. We also show the effective diffusion coefficient obtained
by the through-diffusion method, which is same as the homogenized diffusivityDH

in this HTO self-diffusion problem.
We observe that the HA-calculated results are close to the experimentally derived

results for Kunigel V1 R�. The diffusivity of Kunipia F R� is less than for Kunigel
V1 R� for the same dry density of 2.0 Mg/m3. The experimental data of Sato (1998)
show that the diffusivity of Kunigel V1 R� is several fold that of Kunigel V1 R� for a
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Table 9.6 Diffusivities of HTO in bentonite (Fujii 2002)

No. of clay Diffusivity DH [m2/s]
minerals

Kunipia F R� Kunigel V1 R�

Without interlayer With interlayer Without interlayer With interlayer
diffusion diffusion diffusion diffusion

4 3:57 	 10�11 4:82 	 10�11 5:10	 10�11 5:81	 10�11

6 4:94 	 10�11 6:25 	 10�11 6:62	 10�11 7:38 	 10�11

8 6:02 	 10�11 7:37 	 10�11 9:00	 10�11 9:77	 10�11

10 7:13 	 10�11 8:49 	 10�11 1:06	 10�10 1:14	 10�10

Experiment 4:2	 10�11

(Sato and Shibutani 1994) 5:1 	 10�11

Fig. 9.15 Effective
diffusivity of bentonite with a
dry density of 2.0 Mg/m3 and
the number of clay minerals
in a stack (Fujii 2002)

dry density of 1.6 Mg/m3, while the HA results show ratios of 1.2:1.3 times. This
may be due to the high tortuosity of Kunipia F R�, and the possible consequences of
a smaller interlayer space.

It is reported that the number of layers in a stack in smectitic clays is on average
eight (Fujii and Nakano 1984). If we observe the numerical results and consider the
effects of tortuosity, we can conclude that the number of layers in a stack can be
around eight.

9.5 HA and Similitude for the Seepage/Diffusion Problem

By using the micro-/macro-model shown in Fig. 9.16 and Table 9.7, we can calculate
the flow field in pure smectitic bentonite. We assume that nine layers of clay
minerals are stacked in this micro-model, and the stacks are distributed in a random
orientation. The height of a macro-model is set as lD1m, which gives the parameter
"D10�7. In the microscale model of Fig. 9.16, dext is the height of external water,
and dint is the height of interlayer water, which is determined depending on the dry
density �d as shown in Table 9.7. The height of the micro-model is

X1
2 D 9C 8dint C dext Œnm�:
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Fig. 9.16 Macro-model and micro-model for a hydrated pure smectite

Table 9.7 Calculated properties and permeability for a hydrated pure smectite

�d Mg/m3 Void ratio e dint nm dext nm dint =dext K11 	10�15m/s

1.2 1.24 1.12 2.20 0.80 23.70
1.4 0.93 0.91 1.10 0.87 7.82
1.6 0.59 0.59 – 1.00 2.28
1.8 0.50 0.50 – 1.00 1.42

Note that the external space disappears for the case �d > 1:6 g/cm3. The viscosity
� is given as a function of distance from the surface of the clay mineral. The
boundary condition in the macro-model is set as the hydraulic gradient between the
upper and lower surface, which is 1.0. The stacks are randomly oriented, therefore
the permeability can be regarded as isotropic; KDK�

11=3 where K�
11 is the C-

permeability calculated by (8.31) andK11 is the H-permeability in x11 -direction. The
homogenized velocity is given by vHi D˝vi

˛
. Since the stack orientation is random,

the averaged velocity is vHDvHi =3, and the calculated velocities are given for a
hydrated pure smectite in Table 9.8.

As discussed in Sect. 5.6, the Peclét number in the diffusion PeD denotes the ratio
of the mass transported by convection relative to the mass transported by diffusion.
In the HA for the pure smectitic bentonite, the normalized length L of (5.142) is
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Table 9.8 Averaged velocity, diffusivity and Peclét number for a hydrated
pure smectite

�d Mg/m3 L nm vH 	10�17m/s DH 	10�10m2/s PeD 	10�14

1.2 4.49 7.260 1.089 2.993
1.4 4.17 2.390 0.767 1.299
1.6 3.78 0.698 0.508 0.520
1.8 3.67 0.433 0.412 0.386

chosen as the size of the unit cell, and the normalized velocity and diffusivity are
chosen as the homogenized velocity vH and diffusivity DH ; therefore the Peclét
number PeD is calculated as

PeD D vH=L

DH=L2
; L D ".X1

1 X
1
2 X

1
3 /
1=3: (9.66)

Thus, using the HA method, we can obtain the Peclét number correctly. Note that in
conventional calculations the normalizing length L can be chosen arbitrarily, which
can influence the calculation.

In the self-diffusion problem of water molecules under a given hydraulic
gradient, we can calculate the local velocity distribution and the homogenized
diffusivity of water molecules for the micro-/macro-model (Fig. 9.16), and the
averaged velocity vH is given in Table 9.8. The homogenized diffusive coefficient
DH is also given in Table 9.8. The Peclét number PeD can also be calculated
correctly, as in Table 9.8, and, since the Peclét number for this problem is extremely
small (PeD 
 1), the problem is diffusion-dominant.



Chapter 10
Long-Term Consolidation of Bentonite and a
Homogenization Analysis of the Flow Field

Proposals for the geological disposal of heat emitting high-level radioactive wastes
(HLW) have been put forward by many countries including Japan, Canada, Sweden,
Switzerland, USA, Spain and others. The disposal concepts invariably involve
underground multi-barrier schemes where bentonite clay is chosen for a number of
desirable attributes including its swelling potential and ability to trap the majority
of released radionuclides (JNC 1999; Chapman and McCombie 2003).

The Japanese proposals for the disposal of HLW also advocate a multi-barrier
system with an engineered barrier system (EBS) and a natural geological barrier,
i.e., the surrounding rock mass. The EBS consists of the vitrified waste, a metal
overpack and compacted bentonite. As a physical and chemical buffer, the bentonite
plays an important role in preventing the long-term transport of radionuclides from
a repository. Therefore, it is necessary to understand correctly the performance of
bentonite in its role as an engineered geological barrier. However, in laboratory
consolidation experiments on bentonite specimens over a long-time period, we
frequently observe a secondary consolidation, and the true mechanism of this
secondary consolidation is not yet clearly understood; researchers have applied
viscoelastic and elasto-visco-plastic models (Gibson and Lo 1961; Schiffman et al.
1964; Singh and Mitchell 1968), while others have proposed a conceptual model
of macro-pores and micro-pores (Kamon et al. 1985), but these cannot be easily
applied to practical engineering problems, particularly those involving geological
disposal activities.

The experimental results of long-term consolidation tests on samples of unrefined
bentonite, Kunigel V1 R�, show that the secondary consolidation is caused by the
micro-inhomogeneous behavior of a seepage process in the bentonite that occurs
due to the compression of the external pores and interlayer spaces. In this analysis
the change in permeability is provided by the results of the MD/HA method, which
is described in Chap. 8. The deformation behavior is analyzed by using the standard
Cam clay model (Schofield and Wroth 1968; Atkinson and Bransby 1978; Atkinson
1993; Davis and Selvadurai 2002; Pietruszczak 2010).

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1 10, © Springer-Verlag Berlin Heidelberg 2012
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10.1 Long-term Consolidation Test on Bentonite

Many of the nuclear waste disposal concepts advocate the use of bentonite as a
buffer between the host rock and the metal overpack, which contains HLW, i.e., the
spent fuel or the vitrified waste, but little is known about the long-term behavior of
bentonite.

A test result on Kunigel V1 R�, which was performed over a period of about
3 years will be described. The Cam clay data for the compression index � and
a swelling index � defined by (6.70) and (6.71), respectively, is utilized in short-
duration tests involving consolidation and unloading before long-term consolidation
tests are performed. The swelling due to suction of water in the interlayer space of
smectitic clay minerals has to be distinguished from the swelling due to elasto-
plastic characteristics; the former is called ‘suction swelling’ and the latter is
‘elasto-plastic swelling’.

In this test, water was first imbibed by a specimen of Kunigel V1 R� that was
constrained from movement at both ends, allowing the developed swelling pressure
to reach a constant value. Next, a short-term test sequence of consolidation and
unloading was performed to obtain the compression index � and the swelling
index �. After this procedure, a constant stress was applied and the displacement
was measured. The procedure employed in the experiments is outlined in Table 10.1
and a schematic diagram of the apparatus is shown in Fig. 10.1.

Results for the long-term consolidation are shown in Fig. 10.2, which indicates
that a secondary consolidation process takes place and then, after about 100 days,
a tertiary consolidation.

Table 10.1 Outline of the long-term consolidation of Kinigel V1 R�

Item Content

Type of experiment 1D consolidation
Apparatus Standard consolidation apparatus with functions measuring

the swelling pressure and the amount of imbibed water
Specimens Unrefined bentonite (Kinigel V1 R�)
Dimension Diameter 60 mm, height 10 mm
Initial dry density �d 1.37 and 1.60 Mg/m3

Procedure (1) Compacting the powder bentonite in a cell.
(2) Absorbing water under constant volume (measuring the suction

pressure).
(3) Performing the short-time consolidating and unloading to obtain �

and �.
(4) Continuing the long-term consolidation under a given stress.

Applied stress Max 3.25 MPa
No. of tests Two tests under five different conditions (total ten tests)
Temperature Constant (21ıC)
Pore water Pure water and NaCl water



10.1 Long-term Consolidation Test on Bentonite 269

Fig. 10.1 Schematic diagram of the 1D consolidation apparatus used for long-term consolidation
tests

Fig. 10.2 Secondary/tertiary consolidation for compacted bentonite
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10.2 MD/HA Seepage Analysis and 1D Consolidation Theory

In order to apply the MD/HA permeability developed in Chap. 8 to a 1D consolida-
tion problem, we introduce the following assumptions:

Assumption 1: The target bentonite is a pure smectitic clay, and water flows in the
interlayer space of the clay minerals and/or the external space of the clay stacks.
If the dry density exceeds 1.8 Mg/m3, there exists only the interlayer water (see
Fig. 10.3).

Assumption 2: In a unit cell of the two-scale HA model we assume a quasi-1D
flow if we have a stacked model with parallel clay minerals, and the stacks are
assumed to be randomly distributed. Therefore the permeability obtained by the
MD/HA procedure is isotropic, and water can flow in any direction.

Assumption 3: Both the clay crystal (i.e., solid part) and the water are incompress-
ible. The permeability can change due to the volumetric deformation�"v during
a consolidation procedure, since an amount of external water and/or the interlayer
distance between clay minerals changes. This assumption is represented as

�"v D � �e

1C e

where we use the convention that the compression is negative.

Gibson et al. (1967) proposed an alternative 1D consolidation theory under
a finite strain condition; however, if we ignore a volume change due to the
deformation process of the solid skeleton, the consolidation theory is not completely
correct. We present a finite strain 1D consolidation equation based on the finite strain
consolidation theory described in Sect. 6.3.

Fig. 10.3 Dry density and interlayer water for bentonite (Pusch 1994)
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10.2.1 1D Finite Strain Consolidation Theory

Let X� DX�
KEK and xDxiei be position vectors in the reference and current

configurations (Fig. 10.4), respectively. We assume that in our 1D problem the
deformation exists only in the x3-direction, i.e.,

x1 D X�
1 ; x2 D X�

2 ; x3 D x3.X
�
3 ; t/: (10.1)

Thus the deformation gradient and its inverse are obtained as



F �
iK

�
D
0

@
1 0 0

0 1 0

0 0 ı

1

A ;


F �
iK

��1 D
0

@
1 0 0

0 1 0

0 0 ı�1

1

A ; ı D @x3

@X�
3

; F � D .F �/T :

(10.2)
The Jacobian is given as

J � D det F � D ı: (10.3)

Note that gravity acts in the negative x3 direction, and we have b D .0; 0; �g/.
The differential terms with respect to X�

1 and X�
2 are all null. The components

with respect to X�
3 of the nominal effective Cauchy stress …0 and the nominal pore

pressure P given by (6.27) are obtained as

…0
33D



J � .F �/�1� 0�

33
DJ � .F �/�13i � 0

i3D� 0
33;



PI

�

33
D


J �.F �/�1p

�

33
D p

(10.4)
where � 0 and p are the effective stress and the pore pressure in the current
configuration, respectively.

Following the sign convention used in soil mechanics, we can write the mean
effective stress as p0 D �� 0

33. Then the equilibrium equation (6.29) is given by

@p

@X�
3

D @� 0
33

@X�
3

�mg D � @p0

@X�
3

�mg: (10.5)

Fig. 10.4 1D consolidation model under finite strain
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Also, if we assume that the permeability is isotropic, i.e., k D .k ıij /, we obtain
the permeability and mass flux in the reference state as

K D J �.F �/�1k .F �/�T D
0

@
kı 0 0

0 kı 0

0 0 kı�1

1

A ;

QV D �K



Grad�p � �b0
�

D �k

0

B
B
@

0

0

ı�1 @p
@X�

3

� �g

1

C
C
A :

(10.6)

The intrinsic solid part (i.e., clay crystals) and water are assumed to be
incompressible, i.e., P�� D 0; P�D 0. Then the mass of the solid part is given as
m� D ��.1�n/J �, and the mass conservation law implies Pm� D 0, which suggests
that

Pn ı D .1 � n/ Pı (10.7)

where n is the porosity. By substituting (10.6) and (10.7) into (6.22), the seepage
equation under finite strain is obtained as

Pı � @

@X�
3

"

k

�

ı�1 @p
@X�

3

� �g
�#

D 0: (10.8)

Let e be the void ratio, and e0 be its initial value. Then we have

J � D 1C e

1C e0
D ı: (10.9)

The classical theory of soil mechanics states that under normal consolidation
conditions the relationship between e and ln p0 can be represented in the form

e D �� �ln p0 � ln p0
0

�
(10.10)

where p0
0 is the initial mean effective stress. Then we have

de D ��dp
0

p0 D �.1C e/mv dp
0; mv D de

.1C e/ dp0 D �

.1C e/ p0 (10.11)

where mv is the volume compressibility coefficient. By substituting (10.5), (10.9)
and (10.11) into (10.8), we obtain the following 1D consolidation equation applica-
ble for finite strains:

1

1C e0

de

dt
� @

@X�
3

"
k

mv

1C e0

.1C e/2
@e

@X�
3

Cm0g
#

D 0; m0 D kg

1C e
.�� � �/

(10.12)
where the term m0g represents the influence of buoyancy.
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For simplicity we set X�
3 DX , and assume that the initial void ratio is uniformly

distributed. Thus we have the following initial boundary value problem (IBVP):

Governing equation

@e

@t
� @

@X

 

CF
@e

@X
C �

!

D de

dt
� @

@X

 

CF
@e

@X

!

� CK
@e

@X
D 0; (10.13)

CF D k

mv

 
1C e

1C e0

!�2
; � D .1C e0/m

0g D .�� � �/kg
 
1C e

1C e0

!�1

(10.14)

CK D @�

@e
D .�� � �/g

 
1C e

1C e0

!�1 
@k

@e
� k

1C e

!

(10.15)

Boundary conditions

Dirichlet condition: e.X;t/D Oe.t/ at XD a (10.16)

Neumann condition: � �
 

CF
@e

@X
C �

!

nD OQw.t/ at XD b (10.17)

Initial condition
e.X; tD t0/ D e0.X/ (10.18)

where n is the unit outward normal at XD b, and OQw is the measured value of
mass flux.

The third term of the l.h.s. of (10.13) is caused by buoyancy, as mentioned
previously; if the permeability is small and if the nonlinear term that depends on
the void ratio e can be ignored, the IBVP system is given as follows:

Governing equation: CKD 0

@e

@t
� @

@X

�

CF
@e

@X

�

D 0 (10.19)

Boundary conditions: CKD 0

Dirichlet condition: e.X;t/ D Oe.t/ at X D a (10.20)

Neumann condition: � �CF @e
@X

n D OQw.t/ at XD b (10.21)

Initial condition: CKD 0

e.X; tD t0/ D e0.X/ (10.22)
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10.2.2 Weak Form of the 1D Finite Strain Consolidation
Equation

To develop a finite element scheme we introduce a weak form of the strong form
system (10.13)–(10.18). We integrate (10.13) after multiplying an arbitrary function
w.X/, which is null at XD a, and obtain the following weak form of the 1D finite
strain consolidation equation:

�
@e

@t
; w

�

C
�

CF
@e

@X
;
@w

@X

�

C
�

CK
@e

@X
; w

�

� OQw w.b;t/ D 0;

8w.w D 0 at X D a/ (10.23)

where we integrated the second term by parts, and introduced an inner product as

D
f; g

E
D
Z b

a

f .X/ g.X/ dX:

10.2.3 FEM for 1D Finite Strain Consolidation Equation

We discretize the weak form (10.23) by FEM, and introduce a �-method for the time
discretization.

10.2.3.1 Finite Element Galerkin Method

We apply the finite element Galerkin method to (10.23). That is, we intro-
duce FE interpolation functions N˛ .˛D 1; 2; � � � ; N / for the void ratio e and
Nˇ .ˇD 1; 2; � � � ; N / for the arbitrary function w:

e.X; t/ D N˛.X/ e˛.t/; w.X; t/ D Nˇ.X/wˇ.t/: (10.24)

where e˛.t/ .˛ D 1; 2; � � � ; N / and wˇ .ˇ D 1; 2; � � � ; N / are node vectors of
e and w, respectively. We substitute the approximations (10.24) into the weak form
(10.23), and eliminate the arbitrary vector fwˇg to obtain

M˛ˇ

@eˇ

@t
CK˛ˇ eˇ CR˛ˇ eˇ D Q˛ (10.25)

where we have

M˛ˇ D
D
N˛; Nˇ

E
; (10.26)
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K˛ˇ D
DdN˛

dX
; CF .e/

dNˇ

dX

E
; (10.27)

R˛ˇ D
D
N˛; CK.e/

dNˇ

dX

E
; (10.28)

Q˛ D
D OQw; N˛.XDb/

E
: (10.29)

The result (10.25) is a nonlinear equation. We can introduce a modified Newton-
Raphson method (Owen and Hinton 1980) for solving (10.25). Then we rewrite
(10.25), and (10.26)–(10.29) by introducing variables with superscripts k and k�1,
which implies the values of the variables at each iteration step, and we have

M˛ˇ

@ekˇ

@t
CKk�1

˛ˇ ekˇ CRk�1
˛ˇ ekˇ D Qk

˛; (10.30)

M˛ˇ D
D
N˛; Nˇ

E
; (10.31)

Kk�1
˛ˇ D

DdN˛

dX
; CF .e

k�1/
dNˇ

dX

E
; ek�1 D N	.X/e

k�1
	 (10.32)

Rk�1
˛ˇ D

D
N˛; CK.e

k�1/
dNˇ

dX

E
; (10.33)

Qk
˛ D

D OQk
w; N˛.XDb/

E
; (10.34)

10.2.3.2 Time Discretization: �-method

The node vector eˇ .ˇD 1; 2; � � � ; N / is a function of time t , since we introduced a
discretization in space using the FEM. We use a �-method for time discretization.

Let eN�1
ˇ , which is a node vector at the time step N �1 be known. Then the

unknown vector ek;Nˇ , which is given at the time stepN and at the nonlinear iteration
step k is assumed to be

e
k;n
ˇ D e

k;N�1
ˇ C�t

h
.1 � �/ Pek;N�1

ˇ C � Pek;Nˇ
i

(10.35)

where�t is the time increment, and � is a constant given by

0 
 � 
 1: (10.36)

The procedure with � D 0 corresponds to an explicit difference scheme; � D 1 is an
implicit difference scheme; and � D 0:5 is the Crank-Nicolson scheme.

Since (10.30) is satisfied both for the steps N�1 and N , we have

M˛ˇ Pek;N�1
ˇ CKk�1

˛ˇ e
k;N�1
ˇ CRk�1

˛ˇ e
k;N�1
ˇ D Qk;N�1

˛ ; (10.37)
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M˛ˇ Pek;Nˇ CKk�1
˛ˇ ek;Nˇ CRk�1

˛ˇ ek;Nˇ D Qk;N
˛ : (10.38)

Then after multiplying (10.37) by 1�� and (10.38) by � , and adding the resulting
equations we obtain

MK˛ˇ e
k;N
ˇ D MQk;N

˛ (10.39)

MK˛ˇ D M˛ˇ

�t
C �

�
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˛ˇ

�
;

MQk;N
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˛ C

�
M˛ˇ

�t
�.1 � �/

�
Kk�1
˛ˇ CRk�1

˛ˇ

�
�

e
k;N�1
ˇ

where we used (10.35). If we solve (10.39) by an iteration procedure, we can
determine the node vector ek;Nˇ at each time step N .

10.2.4 Relation Between Permeability and Void Ratio for
Compacted Bentonite

We use a model for a pure smectitic bentonite, Kunipia-F R�, which is compacted
initially to a dry density of 1.4 Mg/m3. The material properties of this bentonite are
shown in Table 10.2.

We assume that there is no external water when the dry density exceeds
1.6 Mg/m3. We consider a unit cell in the two scale HA, which involves a stack
of clay minerals as shown in Fig. 10.5. Note that the following analysis is due to
Theramast (2003).

Assuming that the number of clay minerals involved in a stack is 10, the
interlayer distance is arranged between dD 0:2 � 0:85 corresponding to the void
ratio eD 0:2 � 1:2. We use the relationship between the interlayer distance and the
permeability, which is obtained by the MD/HA calculation as shown in Fig. 10.6,
which is given as

e D ˛H C ˇH ln k (10.40)

where we determine the coefficients by a least squares approximation as follows:

Table 10.2 Material properties of a compacted bentonite, Kunipia-F R�

Elastic coeff. Poisson’s ratio Wet density Dry density Int. frict. angle
[MPa] [Mg/m3] [Mg/m3] [ı]

1,100 – 2.0 1.4 30

Vol. comp. coeff. � � M p0
0

mv [MPa]�1 [MPa]

4:10 	 10�4 0.1403 – – 0.1
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Fig. 10.5 A unit cell model
of a stack of clay minerals

Fig. 10.6 Relationship
between void ratio and
permeability

˛H D 5:663; ˇH D 0:1541:

Using previous experimental results, Pusch (1994) schematically showed the
relationships between the void ratio and permeability for three kinds of clays
(Fig. 8.12). From these results we obtain a relationship between the void ratio and
permeability for montmorillonite clay as

e D ˛P C ˇP ln.k/ (10.41)

˛P D 19:695; ˇP D 0:6013:

This result is shown in Fig. 10.6. We understand that the permeability obtained
by the MD/HD procedure is different from the experimental data at these values
of low void ratio. However, as we will discuss later, if we use both sets of data
for the 1D consolidation analysis, the results in both cases are similar, and we
cannot reproduce the secondary consolidation response. Conducting permeability
experiments on these low permeable materials is extremely difficult. Thus we cannot
conclude that the MD/HD results are incompatible with the experimental results.

In soil mechanics it is common practice to adopt a viscous model to describe
the process of secondary consolidation (see Mitchell 1993); however, by using an
MD simulation it can be shown that a smectite clay stack does not possess a high-
enough viscosity to account for the secondary consolidation process (Ichikawa et al.
2004). Therefore, it is necessary to consider an alternative mechanism to represent
the secondary consolidation.
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Let us introduce such a concept where changing the state of consolidation also
contributes to a change in the permeability. That is, at the first stage t D 0 the
permeability is homogeneous everywhere in a specimen with a value k0. At stage
t D t , when consolidation is in progress, the permeability varies at each point. Then
at the final stage t D tf , the permeability again becomes homogeneous with a value
of kf .

As consolidation progresses, the permeability changes, therefore if we introduce
the state of consolidation at t D t in terms of the void changes as

u D e0 � e

e0 � ef
; (10.42)

then we can define the permeability at any arbitrary time

�
log k � log kf
log k0 � log kf

�˛
C u˛ D 1 (10.43)

where e0 and ef are void ratios at the initial and final stages, respectively. The
permeabilities at the initial and final stages k0 and kf are determined from Fig. 10.6.
The material constant ˛ is determined by referring to Fig. 10.7. Note that u is known
as the degree of consolidation.

Thus, we have an alternative form of (10.43):

log

�
k

kf

�

D log

�
k0

kf

�

.1 � u˛/
1
˛ :

If we set
� D .1 � u˛/

1
˛ ;

Fig. 10.7 A function which
represents the
inhomogeneous consolidation
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then the permeability k is obtained as

k D k0

�
kf

k0

�1��
: (10.44)

10.2.5 Consolidation Experiment and Inhomogeneous 1D
Analysis

We use a model of double-sided (both top and bottom) drainage consolidation for
our 1D analysis as shown in Fig. 10.8.

Using the material parameters given in Table 10.2, and applying loads F ext D
0 � 2:05MPa at the top surface, we obtain the results shown in Fig. 10.9.

The curves shown in Fig. 10.9 indicate the following:

Solid line: Data fitted curve for a bentonite consolidation experiment.
Dashed line: Consolidation curve under a constant permeability kD k0 for all time-

steps and all parts of the specimen.
Line with ı: Consolidation curve using the void ratio-permeability relationship

(10.40), which is obtained by the MD/HA simulation. The permeabil-
ity is constant in the specimen at each time-step (i.e., homogeneous
permeability).

Fig. 10.8 Model for
inhomogeneous 1D
consolidation analysis

Fig. 10.9 Experimental and numerical results: For homogeneous permeability cases
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Line with �: Consolidation curve using the void ratio-permeability relationship
(10.41), which is based on the work of Pusch (1994). The permeability
is constant in the specimen at each time-step (i.e., homogeneous
permeability).

Note that in our analysis the initial void ratio is given as e0 D 1:2, and therefore the
initial permeability from Fig. 10.6 is k0 D 3:0 � 10�13 m/s.

From the results shown in Fig. 10.9, it can be seen that for the case of a constant
permeability k D k0 for all time-steps and in all regions of the specimen (dashed
line) the consolidation is terminated at an early stage. If the permeabilities given
by the MD/HA simulation (line with ı) and the results of Pusch 1994 (line with �)
are used, the consolidation terminates later. However, none of these cases correctly
represents the secondary consolidation.

By comparing the permeabilities given by the MD/HA simulation (line with ı)
and the results given by Pusch 1994 (line with �) we can see that both cases give
similar results; this suggests that for very low permeability, the relative difference
in permeability is not particularly important.

We assume that at the early stage of consolidation, water is drained from the
space external to the stacks in the specimen of bentonite; at the intermediate stage,
the water is drained from both the external space and the interlayer space, and
at the final stage, the water is drained from the interlayer space. Bentonite has a
double space structure and shows secondary consolidation behavior because of this
structure. From this point of view it is clear that even for permeability changes
over time, the secondary consolidation behavior is not represented in these analyses
because of the homogeneous permeability in the specimen.

By considering this fact, we can derive a model given by (10.42), in which the
permeability varies in a specimen since the void ratio is nonhomogeneous.

Fig. 10.10 Experimental and numerical results: For non-homogeneous permeability case



10.2 MD/HA Seepage Analysis and 1D Consolidation Theory 281

The result obtained using this model with non-homogeneous permeability in the
specimen is shown in Fig. 10.10, which represents the secondary consolidation of
bentonite more accurately.

The most important observation derived from this analysis is that the secondary
consolidation is not caused by creep of the solid skeleton. This was confirmed using
X-ray diffraction: Ichikawa et al. (2004) have used an X-ray diffraction apparatus to
measure the crystalline structure at each point of the specimen during consolidation.
From this X-ray diffraction measurement, the above conclusion was verified. It is
important to carefully plan experiments when using materials with extremely low
permeability, since a non-homogeneous state is easily achieved; in the experiments
cited, the specimen was only about 10 mm in height.

Note that we use (10.42) for deciding on the local permeability, where we
introduce a parameter ˛ to represent the internal pore structure schematically.
Further work is needed to establish the correct permeability model for bentonite
with a multiscale pore structure.



Appendix A
Introduction to Vectors

We show some details of the algebra required to study the continuum mechanics
of porous media. Further details can be found in the introductory chapters of
Malvern (1969), Fung (1969), Mase (1970), Chadwick (1976), Selvadurai (2000a),
and Spencer (2004).

A.1 Vectors in R
3

Let us introduce an orthogonal coordinate system (i.e., Euclidean coordinates)
x1; x2; x3 (instead of x; y; z) in the three-dimensional real number space R

3. The
Euclidean basis is fe1; e2; e3g. Then, a vector v in R

3 can be given as

v D v1e1 C v2e2 C v3e3

(Fig. A.1). By using Einstein’s summation convention, we write this as

v D vi ei : (A.1)

That is, the index i in the r.h.s. term of (A.1) appears twice, which is referred to as
the dummy index and implies that the index is added from 1 to 3 in R

3. On the other
hand, we have a free index that appears only once in a term. For example, in the
following equation:

v0
i D Qij vj ; (A.2)

the index i appears once in each term, and it implies i D 1 or 2 or 3. Note that in
(A.2) the repeated index j is dummy, which must be summed up from 1 to 3.

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1, © Springer-Verlag Berlin Heidelberg 2012
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Fig. A.1 A vector in the
three-dimensional real
number space R

3

A.2 Inner Product and the Length of Vectors

An inner product of the Euclidean bases ei and ej gives the following ortho-normal
condition:

ei � ej D ıij (A.3)

ıij D
(
1 if i D j

0 if i¤j (A.4)

where ıij is Kronecker’s delta, which is equivalent to the unit tensor I :

�
.I/ij

� D �
ıij
� D

0

@
1 0 0

0 1 0

0 0 1

1

A : (A.5)

By using (A.3), an inner product of vectors u and v is written as

u � v D ui vj ei � ej D ui vj ıij D ui vi : (A.6)

Note that the coefficient vi of a vector v D vi ei is obtained by an inner product
between v and e i :

vi D v � ei : (A.7)

Assume a linear transformationA that maps a vector u into another vector v (i.e.,
v D A u) where the coefficients are represented by a matrix . Aij /.1 Then, an inner
product between this v and a vector w is given as

1Let U and V be linear vector spaces (see Appendix C for the linear vector space). A transformation
vDAu .u2U ; v2V/ is linear if

A.u1 C u2/ D Au1 CAu2; 8u1; u2;
A.ku/ D kAu 8k; u

where k is a scalar number.
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w � v D w �A u D wi Aij uj D Aji wj ui D ATw � u (A.8)

whereAT represents the transpose ofA, and the coefficient matrix ofAT is



ATij

�
D
0

@
A11 A21 A31

A12 A22 A32
A13 A23 A33

1

A :

The length of a vector v is written as j v j, which is obtained by using an inner
product as

j v j D p
v � v: (A.9)

The inner product of two vectors u and v is then rewritten as

u � v D j u j j v j cos � (A.10)

where � is the angle between u and v.

A.3 Coordinate Transformation

Consider the coordinate transformation from a system fxi g into another system fx0
i g,

which is shown in Fig. A.2. The base vectors are fei g and fe0
i g corresponding to each

coordinate system. A transformation can be written as

e0
i D Qij ej (A.11)

where the coefficient matrix ofQ is

�
Qij

� D
0

@
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

1

A ; (A.12)

which is a coordinate transformation matrix with the following properties:

QQT D QT Q D I ; Q�1 D QT (A.13)

(Q�1 is the inverse of Q, and I is the unit tensor). An index notation of (A.13) is
represented as

Qik Qjk D Qki Qkj D ıij : (A.14)

Let an angle between e0
i and ej be �ij as shown in Fig. A.2a for the three-

dimensional case, and we have
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a b

Fig. A.2 Coordinate transformation; (a) three-dimensional case, (b) two-dimensional case

e0
i � ej D j e0

i j j ej j cos �ij D cos �ij :

This results in
Qij D cos �ij : (A.15)

.Qij / is then referred to as the matrix of direction cosines. We have the following
identity:

e0
i � e0

j D ıij D Qik ek �Qjl el D Qik Qjl ıkl D Qik Qjk;

which proves the result (A.13) or (A.14).
For the two-dimensional case shown in Fig. A.2b, we have cos.�=2� �/ D

sin �; cos.3�=2��/ D�sin � , so that we have the following simplified relationship:

�
Qij

� D
�
Q11 Q12

Q21 Q22

�

D
�

cos � sin �
� sin � cos �

�

: (A.16)

If a vector v is transformed into v0 byQ, we have a similar rule to (A.11):

v0 D Q v: (A.17)

The relationship of a linear transformation v D A u can be similarly represented in
a new coordinate system as

v0 D A0 u0I v0 D Q v; u0 D Qu;

which gives the following transformation rule for the second order tensorA:
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v D A u D QT v0 D AQT u0

) A0 D QAQT : (A.18)

A.4 Outer Product

An outer product or vector product of two base vectors ei and ej is given as

ei ^ ej D eijk ek (A.19)

where

eijk D

8
ˆ̂
<

ˆ̂
:

1; if .i; j; k/ D f.1; 2; 3/; .2; 3; 1/; .3; 1; 2/
�1; if .i; j; k/ D f.1; 3; 2/; .3; 2; 1/; .2; 1; 3/
0; otherwise

(A.20)

is the permutation symbol. An outer product of two vectors a and b is then given as

a ^ b D ai ei ^ bj ej D eijk ai bj ek: (A.21)

Note that by using the permutation symbol eijk , the determinant of a .3�3/-matrix
.Aij / can be written as

detA D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

A11 A12 A13
A21 A22 A23
A31 A32 A33

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D eijk Ai1 Aj2 Ak3: (A.22)



Appendix B
Partial Differentiation and Integral Theorems

Several fundamental results concerning partial differentials and integral theorems
are summarized. Further expositions are given by Spiegel (1971), Greenberg (1998),
Riley et al. (1998), and Selvadurai (2000a).

B.1 Calculus of Partial Differentials

If a function f is defined in a one-dimensional domain x, its differential is
represented as an ordinary differential:

df

dx
D lim

�x!0

f .x C�x/ � f .x/
�x

:

In a two-dimensional domain .x; y/ the partial differential of a function g.x; y/
in each direction is given as

@g

@x
D lim

�x!0

g.x C�x; y/� g.x; y/

�x
;

@g

@y
D lim

�y!0

g.x; y C�y/� g.x; y/

�y
:

A geometrical interpretation of the above is shown in Fig. B.1. For a function
h.x; y; z/ in a three-dimensional domain .x; y; z/ we can have similar partial
differentials.

Let fei g3iD1 be an orthogonal basis in R
3. The gradient of a scalar-valued function

h.x/ is defined by

rh D @h

@xi
ei

where x1 D x; x2 D y; x3 D z and Einstein’s summation convention is used. The
symbol r is ‘nabla’, which is represented as

r D ei
@

@xi
:

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1, © Springer-Verlag Berlin Heidelberg 2012
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Fig. B.1 Geometrical
interpretation of partial
differentials

Let h.x/ D hiei be a vector-valued function, e.g., a displacement u.x/. The
gradient of h.x/ is given as a second order tensor, and the components are written
in a matrix form as

�
.rh/ij

� D
0

@
@hx=@x @hx=@y @hx=@z
@hy=@x @hy=@y @hy=@z
@hz=@x @hz=@y @hz=@z

1

A : (B.1)

In (B.1) we used the right form, which is given in Note 2.2, p. 14.
The gradient rh is uniquely decomposed into a symmetric part .rh/S and an

anti-symmetric part .rh/A as follows:

rh D .rh/S C .rh/A; (B.2)

.rh/S D 1

2

h
.rh/C .rh/T

i
; .rh/A D 1

2

h
.rh/� .rh/T

i
: (B.3)

The divergence of h.x/ is introduced as a scalar function by

r � h D @hi

@xi
: (B.4)

Note that the divergence decreases the order of the tensor, while the gradient
increases its order.

The rotation of a vector-valued function h.x; y; z/ is given by

r ^ h D
�
@hz

@y
� @hy

@z

�

e1 C
�
@hx

@z
� @hz

@y

�

e2 C
�
@hy

@x
� @hx

@z

�

e3: (B.5)
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B.2 Gauss-Green Theorem

Theorem B.1 (Gauss’ Theorem). Let S be the surface of G � R
3, then we have

Z

G

@f

@xi
dv D

Z

S

f ni ds (B.6)

Proof. A domain G with a surface S0, which is parallel to the z-axis is shown in
Fig. B.2. The upper surface of G is S1, and the lower one is S2. The surfaces S1 and
S2 are represented by the following equations:

z D '1.x; y/; on S1I z D '2.x; y/; on S2:

Let a projection of G onto the .x; y/-surface be A. We have a unit outward normal
n D .n1; n2; n3/ at a point P on S2, and an angle between n and the z-axis is
assumed to be 	 . Similarly, an angle 	 0 can be introduced on S1. Then we have

dA D dx dy D
(

cos 	 ds; on S2

cos 	 0 ds; on S1

and

n3 D

8
ˆ̂
<

ˆ̂
:

cos 	; on S2

� cos 	 0; on S1

0; on S0

Since the total surface of G is designated as S D S0CS1CS2, we have

Fig. B.2 Gauss theorem
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Z

G

@f

@z
dv D

“

A

�Z '2.x;y/

'1.x;y/

@f

@z
d z

�

dx dy

D
“

A

h
f .x; y; '2.x; y// � f .x; y; '1.x; y//

i
dx dy

D
Z

S2

f cos 	 ds �
Z

S1

f cos 	 0 ds D
Z

S

f n3 ds:

Here we have assumed that the function f is sufficiently smooth. We can obtain the
same results for the x and y directions, so that we have Gauss’ Theorem (B.6). �
Theorem B.2 (Divergence Theorem) .

Z

G

r � dv D
Z

@G

 � n ds (B.7)

Proof. In Gauss’ Theorem (B.6), we set f D  i , and prove (B.7). Note that
@ i=@xi D r � . �
Theorem B.3 (Green’s Theorem) .

Z

G

.�u/ v dv D
Z

S

v
@u

@n
ds �

Z

G

ru � rv dv (B.8)

where�u is the Laplacian of the function u, and we have
P

i .@u=@xi / ni D @u=@n.

Proof. We set  i D v @u=@xi , and by using r � .v ru/ D .�u/ vCru � rv, we can
obtain (B.8). �

We note that in the one-dimensional case, (B.8) is equivalent to the following
integration-by-parts:

Z x2

x1

d 2u

dx2
v dx D

�
du

dx
v

�x2

x1

�
Z x2

x1

du

dx

dv

dx
dx:

Theorem B.4 (Gauss’ Double Integral Theorem) . Let F D F1i CF2j be a
vector-valued function in the two-dimensional space, and R � R

2 be a simply-
connected domain. Then we have

Z

R

.r ^ F / � k dx dy D
I

C

F � dr or (B.9)

Z

R

�
@F2

@x
� @F1

@y

�

dx dy D
I

C

.F1 dx C F2 dy/ (B.10)

where we set r D x iCy jCzk.

Proof. As shown in Fig. B.3, we assume that the domain R is given in each x and
y direction as
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Fig. B.3 Integral path

a 
 x 
 b; u.x/ 
 y 
 v.x/;

c 
 y 
 d; p.y/ 
 x 
 q.y/:

Then we have

Z

R

@F1

@y
dx dyD

Z b

a

"Z v.x/

u.x/

@F1

@y
dy

#

dxD �
Z b

a

F1 .x; u.x// dx �
Z a

b

F1 .x; v.x// dx

D �
Z

C�
F1 .x; u.x// dx �

Z

C��
F1 .x; v.x// dx D �

I

F1 dx: (B.11)

where C � and C �� are paths through the upper and lower parts of S , respectively.
Similarly, we obtain

Z

R

@F2

@x
dx dy D

I

F2 dy: (B.12)

By combining (B.11) and (B.12), we obtain (B.10). �

B.3 Stokes’ Theorem and Exact Differentiability

Let S be a curved surface in R
3, and r D x iCy jCzk be a position vector on the

surface S . Since the surface S is two-dimensional, we can write the position vector
r in terms of two parameters .u; v/, so that

r.u; v/ D x.u; v/ i C y.u; v/ j C z.u; v/k

where .u; v/ is a coordinate system defined in a two-dimensional domain R, which
is a projection of S onto a flat plane (see Fig. B.4a). A trajectory C on S is
represented as r .u.t/; v.t// where t is an arbitrary parameter.
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Fig. B.4 Curved surface and curved line in R
3

A tangent vector of the trajectory C is obtained as

dr

dt
D ru

du

dt
C rv

dv

dt
; ru D @r

@u
; rv D @r

@v
:

The vectors ru and rv span a tangential plane at a point P on the surface S
(cf. Fig. B.4b). Therefore a vertical vectorN at the point P and its normalized unit
vector n are given as

N D ru ^ rv; n D N

jN j :

Thus the integral of a vector-valued function F .x; y; z/DF1.x; y; z/ i C
F2.x; y; z/ jCF3.x; y; z/k on S can be written as an integral on R:

Z

S

F � ds D
Z

R

F .r.u; v// �N du dv .ds D nds D N du dv/: (B.13)

From the above results, we can prove the following Stokes’ theorem.
Theorem B.5 (Stokes’ Theorem) . Let S be a sufficiently smooth surface in R

3,
and C a piece-wise smooth curve defined on S (cf. Fig. B.5). Then we have

Z

S

.r ^ F / � ds D
I

C

F � dr : (B.14)

Proof. From (B.13) the l.h.s. term of (B.14) is written as

Z

S

.r ^ F / � ds D
Z

R

��
@F3

@y
� @F2

@z

�

N1 C
�
@F1

@z
� @F3

@x

�

N2

C
�
@F2

@x
� @F1

@y

�

N3

�

du dv:
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Fig. B.5 Integrating domain
for Stokes’ theorem

Therefore, if we can prove the following:

Z

R

�
@F1

@z
N2 � @F1

@y
N3

�

du dv D
I

NC
F1 dx (B.15a)

Z

R

�
@F2

@y
N3 � @F2

@z
N1

�

du dv D
I

NC
F2 dy (B.15b)

Z

R

�
@F2

@z
N1 � @F1

@x
N2

�

du dv D
I

NC
F3 d z; (B.15c)

it proves Stokes’ theorem.
First, we will prove (B.15a). Let S be denoted as

z D f .x; y/:

Assume that S� is the projection of S onto the .x; y/-plane. In this case, we have
u D x; v D y, so that R D S�; NC D C �, and from the position vector r, we can
decide the tangential vectors ru; rv and the normal vectorN as follows:

r.u; v/ D x i C y j C f .x; y/k;

ru D rx D i C fx k; rv D ry D j C fy k;

N D ru ^ rv D �fx i � fy j C k:

Therefore the l.h.s. term of (B.15a) is written as

Z

��

�
@F1

@z
.�fy/� @F1

@y

�

dx dy:

On the other hand, if we set F2 D 0 for (B.10), we have

I

NC
F1 dx D

Z

S�
�@F1
@y

dx dy:
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Let us recall that

�@F1.x; y; f .x; y//
@y

D �@F1
@y

� @F1

@z
fy;

and setting �fy D N2; 1 D N3, we obtain (B.15a). In a similar manner we can
prove (B.15b) and (B.15c). Therefore, Stokes’ theorem (B.14) is proved. �

Theorem B.6 Let F D F1 iCF2 jCF3 k be a vector-valued function defined on
D � R

3. We introduce a path integral by

Z

C

F � dr D
Z

C

.F1 dx C F2 dy C F3 d z/ : (B.16)

Then, the integral (B.16) has a path-independent value if and only if there exists a
scalar function f such that

F D rf: (B.17)

Proof. .(/ Let us assume that there is a function f defined onD, which satisfies
(B.17). In the domain D we introduce a path C with its parameter t , which moves
from a point A to a point B . If the path C is represented as

r.t/ D x.t/ i C y.t/ j C z.t/k; a 
 t 
 b;

the integral of (B.16) can be calculated as

Z B

A

F � dr D
Z B

A

rf � dr D
Z b

a

df

dt
dt D f .B/ � f .A/;

which shows that the integral is path-independent.
.)/ Assume that the integral (B.16) is path-independent. For a given point
A.x0; y0; z0/ 2 D we choose a point B.x; y; z/ 2 D, and we define f as

f .x; y; z/ D f0 C
Z B

A

F � dr�; dr� D dx�i C dy�j C d z�k (B.18)

where f0 is an arbitrary constant. Since the integral (B.18) is path-independent
from the above assumption, we change the integration path into A.x0; y0; z0/ !
B1.x1; y; z/ ! B.x; y; z/ such that along the first path A.x0; y0; z0/ ! B1.x1; y; z/
we vary x from x0 to x1 under the constant y and z, and along the second path
B1.x1; y; z/ ! B.x; y; z/ we vary y and z under the constant x D x1. Since y and
z are constant along the first path, we have F2 dy D F3 d z D 0. Similarly, since x
is constant along the second path, we have F1 dx D 0. Therefore, we obtain
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f .x; y; z/ D f0 C
Z B1

A

F1 dx
� C

Z B

B1

.F2 dy
� C F3 d z�/: (B.19)

By operating a differentiation @ =@x to (B.19), the result is

@f

@x
D F1:

Similar results can be obtained for the y and z directions. �
Theorem B.7 (Integrability Condition) . The integral (B.16) is path-independent
if and only if we have

r ^ F D 0: (B.20)

Proof. .)/ Assume that the integral (B.16) is path-independent. Then there exists
a scalar function f due to Theorem B.6. Therefore we have

r ^ F D r ^ .rf / 	 0:

.(/ Assume that r ^ F D 0. If the domain D is simply connected and C is an
arbitrary path in D, then due to Stokes’ theorem (B.14), we have

I

C

F � dr D
Z

S

.r ^ F / � ds D 0:

Thus, the integral (B.16) is path-independent. �



Appendix C
A Summary of Linear Vector Spaces

Here we present a general concept of the vector space in which the n-dimensional
real number space R

n is an example. The central idea of the vector space is to
introduce a ‘vector addition’ and a ‘scalar multiplication’. Further expositions are
given by Protter and Morrey (1977), Friedman (1982) and Keener (1988).

C.1 Algebraic System

Let S D fG; � g be an algebraic system where G is a set and � is an operation. We
can then introduce the following hierarchy for S:

1. S D fG; � g: Algebraic system (G: a set, �: an operation)
Groupoid: the operation � is closed; i.e., a � b 2 G; 8a; b 2 G
Semi-group: (the above C) � is associative; i.e., a � .b � c/ D .a � b/ � c;

8a; b; c 2 G
Monoid: (the above C) 9 an identity element e s.t. a � e D e � a D a,

8a 2 G
Group: (the above C) 8 a 2 G 9 an inverse element b s.t. a � b D b�

a D e

Abelian group: (the above C) � is commutative; i.e., a � bDb � a; 8a; b2G
2. S D fG; +; � g: Algebraic system (G: a set, C & �: operations)

(2.a) Ring

(1) fG; C g is an Abelian group,
(2) fG; � g is a semi-group,
(3) � is distributive w.r.t. C;

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
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a � .b C c/ D a � b C a � c; 8a; b; c 2 G
.aC b/ � c D a � c C b � c; 8a; b; c 2 G

Example 1. Set of integers fZ; C; �g
Example 2. Set of all n-th order polynomials PnŒf � where the coefficients
are in a field K.

PnŒf � D
n
f W f .x/ D a0 C a1�x C � � � C an�xnI a0; a1; � � � ; an 2 K

o

(2.b) Field

(1) fG; C g is an Abelian group,
(2) fG; � g is an Abelian group,
(3) � is distributive w.r.t. C;

a � .b C c/ D a � b C a � c; 8a; b; c 2 G
.aC b/ � c D a � c C b � c; 8a; b; c 2 G

Example 3. Set of rational numbers Q, set of real numbers R, set of
complex numbers C. The addition C and multiplication � follow the
known operation rule.

C.2 A Linear Vector Space V D fX;C;�g

A linear vector space (LVS) is a mathematical system where the following oper-
ations of a vector addition and a scalar multiplication are defined with a scalar
field K:

1. Vector addition C:

(1-1) Commutative; u C v D v C u; 8u; v 2 X
(1-2) Associative; u C .v C w/ D .u C v/C w; 8u; v;w 2 X
(1-3) Zero element; 9 Š 0 2 X s.t. u C 0 D u; 8u 2 X
(1-4) Inverse element; 9 �u 2 X s.t. u C .�u/ D 0; 8u 2 X
2. Scalar multiplication �:

(2-1) For 1 2 K, 1 � u D u; 8u 2 X
(2-2) .l �m/ � u D l � .m � u/; 8u 2 X; 8l; m 2 K
(2-3) .l Cm/ � u D l � u Cm � u; 8u 2 X; 8l; m 2 K
(2-4) l � .u C v/ D l � u C l � v; 8u;u 2 X; 8l 2 K

Example 1. Set of all n-th order polynomials:

PnŒf � D
n
f W f .x/ D a0 C a1�x C � � � C an�xnI a0; a1; � � � ; an 2 K

o
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Example 2. Set of all .m � n/-matrices:

M.m;n/ D
n
A W A D �

aij
�
; i D 1; : : : ; mI j D 1; : : : ; n

o

Example 3. Set of all linear transformations from a LVS U D fX;C;�g to a LVS
V D fY;C;�g W

L.U ;V/ D
n
T W v D T .u/ 8u 2 X; 8v 2 Y s.t.

T .u1 C u2/ D T .u1/C T .u2/; T .ku/ D kT .u/; u; u1; u2 2 X; k 2 K
o

Example 4. Set of all continuous functions C.0; 1/ defined on (0, 1):
The vector addition is defined by f C g ( .f C g/.x/ D f .x/C g.x/

The scalar multiplication is defined by k � f ( .k � f /.x/ D k.f .x//

C.3 Basis and Dimension

A set f ei gniD1 is a (Hamel) basis of V if

1. f ei g are linearly independent,1 i.e., a1e1Ca2e2 C � � � C anen D 0 8a1; a2; � � � ;
an2K iff a1 D a2 D � � � D an D 0, and

2. f ei g spans V , i.e., all vectors v 2V can be represented by a linear combination
of f ei g (v D v1e1Cv2e2C� � �Cvnen).2

A basis f ei g is orthonormal if

˝
ei ; ej

˛ D ıij D
(
1; if i D j;

0; if i ¤ j
(C.1)

where
˝
ei ; ej

˛ D ei � ej is an inner product between ei and ej , and ıij is
Kronecker’s delta (note that the inner product is defined later).

By using the basis f ei g, coefficients vi of a vector v D P
vi ei can be

obtained as
vi D v � ei : (C.2)

The number n of the basis f ei g is referred to as the dimension, which is denoted
as n D dimV . Note that if m D dimU and n D dimV , the dimension of the set of
all linear transformations L.U ;V/ is m � n; i.e., dimL.U ;V/ D m � n.

1If the set is not linearly independent, it is linearly dependent. Note that a1e1Ca2e2 C � � � C anen
is referred to as a linear combination of f ei g.
2For a finite dimensional case (n<1/, the above discussion is obvious. For an infinite dimensional
case we need a further discussion of convergence of the coefficients a1; a2; � � � under a proper norm
topology (cf. Appendix C.8).
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C.4 Topological Spaces

We introduce a topology in a LVS in order to distinguish one element from others.
The topology constitutes the most general class, and hierarchically a metric, a norm
and an inner product are introduced.

1. Topological space .X; T /
A class T of a set X3 is referred to as a topology if the following are

satisfied:

(t-1) X 2 T , and the empty set ; 2 T .
(t-2) G1 2 T ; G2 2 T ) G1 \G2 2 T .
(t-3) For any class fGi g that consists of elements of T , we have [iGi 2 T .

2. Metric space .X; d/

(m-1) d.x; y/ D 0 iff x D y; 8x; y 2 X
(m-2) d.x; y/ D d.y; x/; 8x; y 2 X
(m-3) d.x; z/ 
 d.x; y/C d.y; z/; 8x; y; z 2 X : triangular inequality
(m-4) d.x; y/ > 0; 8x ¤ y 2 X
3. Normed linear space .X; k � k/
(n-1) k x k � 0 where k x k D 0 iff x D 0

(n-2) k˛x k D j˛k x k; 8x 2 X , ˛: a scalar number
(n-3) k x C y k 
 k x k C ky k; 8x; y 2 X : triangular inequality

4. Inner product space .X; .�; �/ /
(i-1) .x; x/ � 0 where .x; x/ D 0 iff x D 0

(i-2) .x; y/ D .y; x/
�
; 8x; y 2 X where .y; x/

�
is the complex conjugate of

.y; x/.
(i-3) .�x; y/ D ��.x; y/; 8x; y 2 X , �: a scalar number where �� is the

complex conjugate of �.
(i-4) .x; y C z/ D .x; y/C .y; z/; 8x; y; z 2 X : Pythagoras’ Theorem

Proof of .X; d/ � .X; k � k/ if d.x; y/ D k x � y k:

(m-1) d.x; y/ D k x � y k D 0 ) x � y D 0 i.e. x D y

(m-2) d.x; y/ D k x�y k D k .�1/.y�x/ k D j�1jky�x k D ky�x k D d.y; x/

(m-3) d.x; z/ D k x � z k D k x � y C y � z k 
 k x � y k C ky � z k D
d.x; y/C d.y; z/

(m-4) d.x; y/ D k x � y k > 0; 8x ¤ y 2 X
Proof of .X; k � k/ � .X; .�; �/ / if k x k2 D .x; x/

3A class or family is a set of sets.
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(n-1) Trivial
(n-2) k˛ x k2 D .˛ x; ˛ x/ D ˛�˛.x; x/ D j˛j2k x k2
(n-3) k x C y k2 D .x C y; x C y/ D .x; x/C .y; x/C .x; y/C .y; y/ 
 k x k2 C

2k x kky k C ky k
where we applied the Schwartz inequality; i.e., .x; y/ 
 k x k ky k.

Proof of the Schwartz inequality:
For y ¤ 0, we have k x � �y k2 D .x � �y; x � �y/ � 0 8�

) .x; x/ � ��.y; x/ � �Œ.x; y/ � ��.y; y/� � 0

Since � is arbitrary, we can set �� D .x; y/=.y; y/, then the term Œ � of the
above equation becomes null.

Thus, we have

k x k2 � .y; x/ .x; y/

ky k2 D k x k2 � .x; y/2

ky k2 � 0 ) k x k2 ky k2 � .x; y/2 �

C.5 Cauchy Sequence and Complete Space

A sequence fxng in a metric space .X; d/ is referred to as a Cauchy sequence or
fundamental sequence if d.xm; xn/ ! 0 for m; n ! 1. A convergent sequence is
Cauchy,4 however the converse is not always true.

A metric space .X; d/ is complete if any Cauchy sequence in .X; d/ is
convergent. The space of real numbers R is complete under d.x; y/ D j x � y j,
while the space of rational numbers Q is not complete under the same metric, since,
e.g., e D 1C1C1=2ŠC1=3ŠC� � � (i.e., the l.h.s. term is an irrational number, while
the r.h.s. terms are rational numbers).

An operation to add all the limits of Cauchy sequences to .X; d/ is referred to
as a completion. We recall that the space of real numbers R is a completion of the
space of rational numbers Q under the uniform norm j � j.

A complete normed space is referred to as a Banach space, and a complete inner
product space is a Hilbert space.

C.6 Functionals and Dual Space

A set of all linear transformations L.U ;R/ from a LVS U D fX;C;�g into the real
number space R is referred to as a dual space, which is denoted as U�. An element

4A sequence f xm g in .X; d/ converges (strongly) to x 2 X if d.xm; x/ ! 0 for n ! 1;
i.e., 8" > 0; 9 N > 0 s.t. d.xn; x/ < " 8n > N . We have d.xm; xn/ � d.xm; x/ C
d.xn; x/ ! 0 for a convergent sequence, which implies that the convergent sequence is Cauchy.
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f in U� is called a functional. We have f .u/ 2 R for u 2 U , then we emphasize
the fact that there exists a vector f 2U� and write

f .u/ D ˝
f ; u

˛ 2 R (C.3)

where
˝�; �˛ W U� � U ! R is a bilinear map such that

˝
˛f1 C ˇf2; u

˛ D ˛
˝
f1; u

˛C ˇ
˝
f2; u

˛
;

˝
f ; ˛u1 C ˇu2

˛ D ˛
˝
f ; u1

˛C ˇ
˝
f ; u2

˛
:

Let U be a finite dimensional LVS and its dimension is n (n D dimU), then the
dimension of U� is also n (n D dimU�).

If f ei g is a basis of U (referred to as a covariant basis), a basis of U�, denoted
as f ei g, can be given as

˝
ei; ej

˛ D ıij D
(
1; if i D j

0; if i ¤ j:
(C.4)

f ei g is referred to as a dual or contravariant basis of f ei g.
Including infinite dimensional cases, we can introduce a norm k � k� on U� as

kf k� D sup

� ˝
f ; u

˛

k u k ; u ¤ 0




D sup
kvk�1

˝
f ; v

˛
(C.5)

where k � k is a norm on U .

C.7 Tensor Product and Tensor Space

Let V and V� be a finite dimensional LVS and its dual space, which have a covariant
basis f ei gniD1 (i.e., the basis of V) and a contravariant basis f ei gniD1 (i.e., the basis
of V�). Henceforth we use Einstein’s summation convention.5

1. What is a tensor?
If a bilinear map ˛.u; v/ is defined for u; v 2V , ˛ is referred to as a second-

order covariant tensor. If u D uiei ; and v D vj ej , we have

˛.u; v/ D ˛.uiei ; vj ej / D ui vj ˛.ei ; ej /:

5Here we extend Einstein’s summation convention for the three-dimensional space, which is shown
in Appendix A.1. A vector in an n-dimensional space is represented as uDPn

iD1 ui e i , which can
be denoted as u D uiei under the summation convention where i is a dummy index (appearing
twice in a term), which implies summing from 1 to n. A free index appears once in a term, which
implies 1 or 2, � � � , or n.
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We set ˛.ei ; ej / D ˛ij , which represents coefficients of the second-order
covariant tensor ˛.

2. Tensor product
For given �; � 2 V�, we define a tensor product � ˝ � as

˛.u; v/ D �.u/ � �.v/ 	 .� ˝ �/.u; v/ 8u; v 2 V (C.6)

where ˛ is a corresponding covariant tensor. For u D uiei ; v D vie i ; � D
�ie

i ; � D �ie
i , we have

�.u/ � �.v/ D �i ui .�j vj / D �i �j .u
i vj /

where �i �j represents coefficients of the covariant tensor ˛ D � ˝ �.
If we use a contravariant basis f ei gniD1, which provides the basis for �; �, a

covariant tensor ˛ can be written as

˛ D ˛ij e
i ˝ ej : (C.7)

This shows that a covariant tensor is introduced on a contravariant basis f ei gniD1
of the dual space, while a contravariant tensor ˛ D ˛ij ei ˝ ej is given on
a covariant basis f ei gniD1, which is defined by ˛.�; �/ for �; � 2 V�. Mixed
tensors corresponding to ˛.�; u/ and ˛.u; �/ are similarly introduced.

3. Linear transformation and mixed tensor
Let T W V ! V .u 2 V ; � 2 V�/ be a linear transformation. There is a one-

to-one correspondence between a mixed tensor ˛ and a linear transformation T
such that

˛.�; u/ D ˝
�; T .u/

˛ D �i T
i
j uj (C.8)

where
˝�; �˛ is a bilinear map. Then T can be written as

T D T ij e i ˝ ej :

4. Tensor space
We can define a vector addition for two covariant tensors ˛ and ˇ, and a scalar

multiplication between a scalar � (for simplicity, a real number) and a covariant
tensor ˛ as follows:

.˛C ˇ/.u; v/ D ˛.u; v/C ˇ.u; v/;

.�˛/.u; v/ D � .˛.u; v// :

Then a set of all covariant tensors is a LVS where a zero element and an inverse
element are given as
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0-element W 0.u; v/ D 0;

Inverse element W .�˛/.u; v/ D �˛.u; v/:

Similarly, we can introduce a space of contravariant tensors or mixed tensors.

C.8 On Completeness of Function Spaces

We first show that the set of all continuous functions CŒa; b� is complete only under
the uniform norm k x k1 D sup

t 2T
j x.t/ j. Then we prove that the Fourier basis f�ng is

complete for periodic functions in the Lebesgue integrable space L2Œ�L=2;L=2�6;
i.e., any function f in this space can be represented as

P1
nD�1 Of �

n �n D f .

C.8.1 Sequence Space lp

A vector u D .u1; u2; u3; : : :/ belongs to the sequence space lp if

k u k D
 1X

i

j ui jp
!1=p

< 1: (C.9)

The sequence space lp is a metric space since the metric axioms presented in
Appendix C.4 are satisfied as follows:

(m-1) d.x; y/ D 0 iff x D y: Trivial
(m-2) d.x; y/ D d.y; x/: Trivial
(m-3) d.x; z/ 
 d.x; y/ C d.y; z/: We will prove this in the following Step

(a-1)–Step (a-4).
(m-4) d.x; y/ > 0: Trivial

Step (a-1) We have the following auxiliary theorem:

˛ ˇ 
 ˛p

p
C ˇq

q
8˛; ˇ > 0 (C.10)

where p and q are real numbers, which satisfy

6A function f belongs to LpŒ
� if

kf kp < 1; kf kp D
�Z




jf jpdx
�1=p

where the integral is given in the sense of Lebesgue.
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Fig. C.1 Auxiliary
inequality

1

p
C 1

q
D 1 ) .p � 1/.q � 1/ D 1: (C.11)

Proof. Let u D tp�1 ) t D uq�1. Referring to Fig. C.1, we understand that the
rectangular area ˛ˇ is always smaller than the sum of the area (1) and the area (2).
This results in

˛ˇ 

Z ˛

0

tp�1 dtC
Z ˇ

0

uq�1 du D ˛p

p
C ˇq

q
: �

Step (a-2) Let x D .�j / 2 lp; y D .�j / 2 lq . Then we have the following
Hölder’s inequality:

1X

jD1
j �j �j j 


0

@
1X

jD1
j �j jp

1

A

1=p 0

@
1X

jD1
j �j jq

1

A

1=q

: (C.12)

Proof. We put

Q�j D �j

.
P j �k jp/1=p ; Q�j D �j

.
P j �k jq/1=q (C.13)

where
P j Q�k jp D 1;

P j Q�k jq D 1. From (C.10) we have

j Q�j Q�j j 
 1

p
j Q�j jp C 1

q
j Q�j jq:

By summing up with respect to the index j , we have

1X

jD1
j Q�j Q�j j 


1X

jD1

1

p
j Q�j jp C

1X

jD1

1

q
j Q�j jq D 1

p
C 1

q
D 1:

By using (C.13), we obtain Hölder’s inequality (C.12). Note that the inequality for
p D q D 2 in (C.12) is referred to as the Cauchy-Schwartz inequality. �
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Step (a-3) Let x D . �j / 2 lp; y D . �j / 2 lq . Then we have the following
Minkowski’s inequality:

0

@
1X

jD1
j �j C �j jp

1

A

1=p



0

@
1X

jD1
j �j jp

1

A

1=p

C
0

@
1X

jD1
j �j jq

1

A

1=q

: (C.14)

Proof. We put !j D �j C�j , and the triangular inequality for real numbers �j and
�j results in

j!j jp D j �j C �j jp j!j jp�1 
 �j �j j C j �j j� j!j jp�1:

We add up j from 1 to a finite integer n, and we have

nX

jD1
j!j jp 


nX

jD1
j �j j j!j jp�1 C

nX

jD1
j �j j j!j jp�1



0

@
nX

jD1
j �j jp

1

A

1=p0

@
nX

jD1

�j!j jp�1�q
1

A

1=q

C
0

@
nX

jD1
j �j jp

1

A

1=p0

@
nX

jD1

�j!j jp�1�q
1

A

1=q

.( Hölder’s inequality/

D

2

6
4

0

@
nX

jD1
j �j jp

1

A

1=p

C
0

@
nX

jD1
j �j jp

1

A

1=p
3

7
5

0

@
nX

jD1
j!j jp

1

A

1=q

where we used the relationship .p�1/q D pq�q D pCq�q D p. The above
inequality can be rewritten as

0

@
nX

jD1
j �j C �j jp

1

A

1�1=q



0

@
nX

jD1
j �j jp

1

A

1=p

C
0

@
nX

jD1
j �j jp

1

A

1=p

:

Since p D 1�1=q, we have Minkowski’s inequality (C.14) when n!1. �

Step (a-4) Let x D . �j /; y D . �j /; z D . �j / 2 lp . Then, from Minkowski’s
inequality (C.14) we have

d.x;y/ D
0

@
1X

jD1
j �j � �j jp

1

A

1=p

D
0

@
1X

jD1
j �j � �j C �j � �j jp

1

A

1=p



0

@
1X

jD1
j �j � �j jp

1

A

1=p

C
0

@
1X

jD1
j �j � �j jp

1

A

1=p
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D d.x; z/C d.z;y/: (C.15)

This result shows that lp is a metric space. �

C.8.2 Completeness of lp

We prove here that the metric space lp .1 
 p < 1/ is complete. Let xm D
. �

.m/
j /; xn D . �

.n/
j / 2 lp be Cauchy sequences. Then for any " > 0 there exists

N > 0, which satisfies the following:

d.xm;xn/ D
0

@
1X

jD1
j �.m/j � �.n/j jp

1

A

1=p

< "; 8m; n > N: (C.16)

This implies that for each j th component we have the inequality

j �.m/j � �
.n/
j j < "; 8m; n > N:

Therefore, for a fixed j , .�.1/j ; �
.2/
j ; � � � / forms a Cauchy sequence. Since the spaces

of real numbers R and complex numbers C are complete, we have a limit �j such

that �.m/j ! �j form ! 1. For this limit �j , we set x D .�1; �2; � � � /, and we prove
that x 2 lp and xm ! x.

From (C.16), for anym; n > N we have

kX

jD1
j �.m/j � �.n/j jp < "p; k D 1; 2; � � � :

Let n ! 1 .�
.n/
j ! �/, then for anym>N we have

kX

jD1
j �.m/j � �j jp < "p; k D 1; 2; � � �

Furthermore, let k ! 1, then for anym > N we obtain

1X

jD1
j �.m/j � �j jp < "p:

This shows that

xm � x D . �
.m/
1 � �1; �.m/2 � �2; � � � / 2 lp:
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From Minkowski’s inequality (C.14) we have

kx k D kxm C .x � xm/ k 

0

@
1X

jD1
j �.m/j jp

1

A

1=p

C
0

@
1X

jD1
j �.m/j � � jp

1

A

1=p

< 1:

This results in x 2 lp. Therefore, lp is complete.
It is not difficult to prove that the metric space l1 .kx k1 D sup

j

j �j j/7 is also

complete.

C.8.3 Completeness of CŒa; b
 Under the Norm kx k1

Let CŒa; b� be a set of all continuous functions defined on T D Œa; b�.8 We show
that CŒa; b� is complete under the norm k x k1 D sup

t 2T
j x.t/ j.

Let f xm g be a Cauchy sequence in CŒa; b�, then for a given ">0 there is N >0
such that

d.x; y/ D k x.t/ � y.t/ k1 D sup
t 2T

jxm.t/ � xn.t/ j < "; 8m; n > N: (C.17)

Therefore, for a fixed t0 2 T we have

jxm.t0/� xn.t0/ j < "; 8m; n > N:

Since the real number space R is complete, there exists the limit x.t0/ such that
xm.t0/ ! x.t0/ for m ! 1. Therefore, for any t 2 T we have a value of the
function x. We prove that the limit x belongs to CŒa; b� and xm!x.

From (C.17), for n!1 we have

sup
t 2T

jxm.t/ � x.t/ j < "; 8m > N:

This shows that for a given ">0 we have the inequality

sup jxm.t/ � x.t/ j < "; 8m > N

7The notation ‘sup’ (supremum) shows the least upper bound and ‘inf’ (infimum) is the greatest
lower bound.
8A function x.t/ is continuous at t0 2 T if for a given " > 0, there exists ı > 0 such that

k x.t/� x.t0/ k < " 8t 2 T satisfying j t � t0 j < ı:
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on any point t 2 T . That is, x.t/ is continuous at any point t , which implies that
f xm.t/ g uniformly converges to x.t/.9 In conclusion, under the norm k x.t/ k1 D
sup
t 2T

j x.t/ j the Cauchy sequence f xm g in CŒa; b� has a limit x, which is continuous,

therefore CŒa; b� is complete. Note that since we choose the norm k x.t/ k1 D
sup
t 2T

j x.t/ j, the sequence f xm g uniformly converges to x, while if we use, for

example, a p-norm such as k x.t/ kp D
 Z b

a

j x.t/ jp dt
!1=p

; .1 
 p <1/, we

cannot prove the completeness. For further discussion we need a knowledge of the
Lebesgue integral.

Note C.1 (Uniform convergence and continuity of sequence of functions). We show
that if a sequence of functions f xm g uniformly converges to x, the limit x is
continuous.

Since f xm g uniformly converges to x, for a given ">0 there is N >0 such that

j xn.t/ � x.t/ j < " 8n > N and 8t 2 T:

If xn is continuous at t D t0, there is ı>0 such that

j xn.t/ � x.t0/ j < " 8t 2 T satisfying jt � t0j < ı:

For this t 2 T we have

j x.t/ � x.t0/ j < j x.t/ � xn.t/ j C j xn.t/ � xn.t0/ j C j xn.t/ � x.t0/ j; < 3"

which shows that x is continuous at t0 2 T . Since t0 2 T is arbitrary, x is continuous
at any point in T . �

C.8.4 Bessel’s Inequality and Parseval’s Equality

Let
˝�; �˛ be an inner product defined on a space X , and f �n g an orthonormal

sequence in X . Then we have the following Bessel’s inequality (Yoshida 1980):

1X

nD�1
j ˝f; ��

n

˛ j2 
 kf k2: (C.18)

9A sequence of functions f xm g uniformly converges to x if for a given " > 0 there is N > 0 such
that

k xn.t/� x.t/ k < " 8n > N and 8t 2 T:
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Proof. Let YN be a space, which is spanned by f �n gNnD�N (N < 1 is a natural
number):

YN D
n
˛ W ˛ D PN

nD�N an �n; an 2 R

o
� X:

That is, YN is the entirety of all linear combinations of f �n g (cf. Appendix C.3).
Let f 2X be given, and we introduce the following partial sum:

fN .x/ D
NX

nD�N

˝
f; ��

n

˛
�n.x/ D

NX

nD�N
Of �
n �.x/ for N W fixed (C.19)

Let h D f �fN , then we have

˝
h; f �

N

˛ D ˝
f; f �

N

˛ � ˝
fN ; f

�
N

˛

D ˝
f;
P˝

f; ��
n

˛
�n
˛ � ˝

fN ; f
�
N

˛

D P˝
f; ��

n

˛� ˝
f; ��

n

˛ �P˝
f; ��

n

˛ ˝
f; ��

n

˛� ˝
�n; �

�
n

˛

D 0;

since
˝
�n; �

�
n

˛ D 1, which shows that h is orthogonal to fN . Therefore, from
Pythagoras’ theorem we obtain

kf k2 D kfN k2 C kh k2

) kh k2 D kf k2 � kfN k2 D kf k2 �
NX

nD�N
j ˝f; ��

n

˛ j2 � 0

)
NX

nD�N
j ˝f; ��

n

˛ j2 
 kf k2 < 1:

For anyN we have kf k2<1. Thus forN !1, we can obtain Bessel’s inequality
(C.18). �

If we recall the Fourier analysis, we understand that Of �
n D ˝

f; ��
n

˛
are the Fourier

coefficients. Note that Bessel’s inequality (C.18) is reduced to an equality if we have

˝
f �

1X

nD�1
Of �
n �n; f

� �
1X

nD�1
Ofm��

m

˛ D kf �
1X

nD�1
Of �
n �n k2 D 0:

It is only in this case that the Fourier series is complete; i.e.,
P1

nD�1 Of �
n �n D f ,

then the Fourier basis f�ng can be complete in a function space such that an element
is a periodic and continuous function belonging to the Lebesgue integrable space
L2Œ�L=2;L=2�. We will show this in the following discussion, though the above
conditions can be relaxed.
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If f �n g is complete, we have for functions f; g 2 L2Œ�L=2;L=2�
Of �
n D ˝

f; ��
n

˛
; Og�

n D ˝
g; ��

n

˛
;

then from Parseval’s identity (Parseval relation) we have

˝
f; g�˛ D

1X

nD�1
Of �
n Ogn: (C.20)

The proof is as follows:

ˇ
ˇ
ˇ
˝
f; g�˛ �

NX

nD�N
Of �
n Ogn

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z

f

 

g� �
NX

nD�N
Ogn ��

n

!

dx

ˇ
ˇ
ˇ
ˇ


 kf k
�Z ˇ

ˇ
ˇ g� �

NX

nD�N
Ogn ��

n

ˇ
ˇ
ˇ
2

dx

�1=2
! 0 as N ! 1 �

From Parseval’s equality (C.20) we have
P1

nD�1 j Of �
n j2 < 1. Therefore, we

obtain
lim

jnj!1
j Of �

n j2 D 0

and the following equation is also satisfied:

lim
jnj!1

Of �
n D lim

n!1

Z L=2

�L=2
f .x/ sin knx dx D lim

n!1

Z L=2

�L=2
f .x/ cos knx dx D 0:

(C.21)

Based on the above discussions, it is understood that we must prove the
completeness of the following Fourier basis in a function space:

n
� � � ; ��1; �0; �1; � � �

o
D
n
�n.x/ D e iknx=

p
L
o1
nD�1:

C.8.5 Completeness of Fourier Basis f�ng

Let a function f 2L2Œ�L=2;L=2� be periodic (f .�L=2/ D f .L=2/) and
continuous. We write a partial sum of f under the Fourier basis f�ng as

fN .x/ D
NX

nD�N

˝
f; ��

n

˛
�n.x/ D

NX

nD�N
Of �
n �.x/ D

NX

nD�N

1

L

Z L=2

�L=2
f .t/ e ikn.x�t / dt

(C.22)
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(cf. (C.19)). In addition, we assume that a derivativef 0 Ddf=dx 2 L2Œ�L=2;L=2�
is also periodic and continuous, so that at any point x 2 L2Œ�L=2;L=2� for a given
h>0 there is ı>0 such that

Z xCı

x�ı

ˇ
ˇ
ˇ
ˇ
f .t C h/� f .t/

h

ˇ
ˇ
ˇ
ˇ

2

dt < 1: (C.23)

Then, the partial sum fN converges to f :

lim
N!1 kfN � f k D 0: (C.24)

Proof. By using an integral transformation, the partial sum fN given by (C.22) is
written as

fN .x/ D 1

L

Z L=2

�L=2
DN .x � t/ f .t/ dt (C.25)

where

1

L

Z L=2

�L=2
DN .x � t/ dt

.yDx�t /D 1

L

Z x�L=2

xCL=2
DN .y/ .�dy/ D 1

L

Z L=2

�L=2
DN .t/ dt

D 1

L

Z L=2

�L=2

NX

nD�N
e iknt dt D 1 (C.26)

.* e iknt D 1 for kn D 0I otherwise, the integral is 0 due to the periodicity./

DN .t/ D
NX

nD�N
e iknt D e�ikN t � 1C e ik1t C Ce ik2t C � � � C e 2ikN t

�

D e�ikN t 1 � e i.2kNCk1/t

1 � e ik1t
D sinf.kN C k1=2/tg

sin .k1t=2/
: (C.27)

By using (C.26) and (C.27), we have

fN .x/� f .x/ D 1

L

Z L=2

�L=2
DN .t/

n
f .x � t/ � f .x/

o
dt

D 1

L

Z L=2

�L=2
sinf.kN C k1=2/tg g.t/ dt

D 1

L

Z L=2

�L=2
sin kN t

h
cos.k1t=2/ � g.t/

i
dt
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C 1

L

Z L=2

�L=2
cos kN t

h
sin.k1t=2/ � g.t/

i
dt (C.28)

where

g.t/ D
8
<

:

f .x � t/ � f .t/

sin .k1t=2/
; for t ¤ 0;

0; for t D 0:

(C.29)

If j t j 
 1, we can have a domain such that sin .k1t=2/ � k1j t j=4, and together
with (C.23) we obtain g 2 L2Œ�L=2;L=2�. Thus, the terms Œ � � of the r.h.s. of
(C.28) also belong to L2Œ�L=2;L=2�. By applying (C.21) to the above result, we
have the final result (C.24) limN!1 kfN �f k D 0 as N !1.



Appendix D
Classical and Chemical Thermodynamics

First, some fundamental concepts of thermodynamics are introduced and these
will be discussed in greater detail in subsequent sections. In this Appendix we
treat phenomena relevant to mechanics and temperature; other effects including
chemical fields (cf. Appendix E) and electromagnetic effects are excluded. Further
expositions are given by de Groot and Mazur (1962), Kestin (1979) and Kondepudi
and Prigogine (1998).

D.1 Energy Conservation Law and Thermodynamic Systems

The total energy E consists of the kinetic energy K and the internal energy U , and
several types of energy fluxes contribute to the change in the internal energy U and
the kinetic energy K. The energy flux consists of the heat flux dQ, the power dW ,
which corresponds to a mechanical flux, the chemical energy flux dC due to the
change of mass, called the mass-energy flux, and the electromagnetic energy flux.
These fluxes induce a change of internal energy dU . We now have the following
energy conservation law:

dE D dK C dU D dW C dQ C dC: (D.1)

The change of mass of this system can be denoted by dM.
Each energy flux consists of an externally supplied part and an internally

generated part. For example, the heat flux dQ is decomposed into the heat flow
dQe supplied from outside the system and the internally generated heat flow dQi ;
the mechanical power dW and the mass-energy flux dC are decomposed in the
same manner:

dW D dWe C dW i ; dQ D dQe C dQi ; dC D dCe C dCi : (D.2)

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
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First, we introduce the notation: dQ is the heat flux (i.e. the rate of heat supply),
which consists of a part supplied from outside the system dQe and a part generated
internally dQi ,

Let us define the following thermodynamical systems:

1. Isolated system: No interaction with the surroundings (dWe D 0; dQe D 0;

dCe D 0; dM D 0). It should be noted that internally generated fluxes
dW i ; dQi ; dCi do not always vanish.

2. Closed system: Energy is exchanged with the surroundings, while no mass is
exchanged (dWe¤0; dQe¤0; dCe D 0; dM D 0).

3. Adiabatic system: Work is input in the system, while no heat energy is exchanged
with the surroundings (dWe¤0; dQe D 0; dCe D 0; dM D 0).

4. Open system: Energy and material are exchanged with the surroundings
(dWe ¤ 0; dQe¤0; dCe¤0; dM¤0).

In order to describe the thermodynamical status of the system it is necessary
to introduce both extensive and intensive variables, which form a scalar-valued
‘energy’ in their combination:

1. Extensive variables: Variables proportional to the amount of mass of the system,
such as strain and entropy.

2. Intensive variables: Variables non-proportional to the amount of mass of the
system, such as stress and temperature.

For example, a change of internal energy due to mechanical work is denoted by an
inner-product of stress, an intensive variable, and strain increment under small strain
conditions, which is an extensive variable: A change of internal energy due to heat
supply is denoted by a product of temperature, an intensive variable, and an entropy
increment, which is an extensive variable.

D.2 Existence of Entropy and Thermal Energy: First Part
of the Second Law of Thermodynamics

There are two approaches for proving the existence of entropy in classical ther-
modynamics; these rely on either molecular-based statistical mechanics or classical
thermodynamics. First we employ the latter approach because of its simplicity. It is
not necessary to use either approach, because the conjugate property of temperature
and entropy is important. In the sense of molecular physics, both the temperature
and entropy are an aspect of kinetic movement and the energy level of molecules.

The concept of entropy is attributed to Carnot (1824) for his deep insight prior
to the statement of the First Law of Thermodynamics (see Feynman et al. 1963,
Vol. I, Chap. 44), although the introduction of the term entropy is due to Clausius in
1850 (Kestin 1979). Here the fundamental idea of entropy is examined on the basis
of Carnot’s concept. Then, based on the discussion of Prigogine (1967; Kondepudi



D.2 Existence of Entropy and Thermal Energy 319

Fig. D.1 Heat engine

and Prigogine 1998), there exists an entropy production in the system due to an
irreversible process, which results in the Second Law of Thermodynamics.

D.2.1 Carnot Cycle

Let us consider a heat engine or simply engine, shown schematically in Fig. D.1,
which takes heat �Q1 from the high-temperature source T1, transfers a part of it
into work �W , and delivers heat �Q2 to the low temperature source T2 (if we
follow the notations of the First Law of Thermodynamics described in Sect. 3.2.4,
�Q1; �Q2; �W should be denoted as dQ1; dQ2; dW , respectively; however,
by keeping these variables under the ‘finite values’, we employ the notation with
increments denoted by �. We apply the First Law to the working material of the
heat engine. If there is no loss in the working material, the internal energy does not
change and the transferred heat�Q2 is just equal to the accepted heat�Q1 less the
work�W :

�U D �Q1 ��Q2 ��W D 0 ) �Q2 D �Q1 ��W : (D.3)

The efficiency of this engine is defined by

� D �W
�Q1

D �Q1 ��Q2

�Q1

D 1 � �Q2

�Q1

(D.4)

The ideal engine, that is, without loss due to friction etc., is referred to as the
reversible engine. This reversible engine can be operated under�Q2 D 0, therefore
the efficiency is � D 1. Note that the working material of this reversible engine is
not necessarily a perfect gas.

The Carnot cycle for this heat engine is shown in Fig. D.2a where the processes
are represented as follows:
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Fig. D.2 Carnot cycle (a)
process of Carnot cycle (b)
state diagram of Carnot cycle

1. Isothermal expansion process: Keeping the same temperature T1 with a high
temperature thermal bath, the piston is slowly pulled up to absorb heat �Q∞.

2. Adiabatic expansion process: The engine is moved out of the bath, and the piston
continues to be pulled up until the temperature reaches T2. Note that T1>T2.

3. Isothermal compression process: Keeping the same temperature T2 with a low
temperature thermal bath the piston is slowly pushed down to exhaust heat�Q∈.

4. Adiabatic compression process: The engine is moved out of the bath, and the
piston continues to be pushed down until the temperature reaches T1.

The total work during Carnot cycle a!b!c!d!a shown in Fig. D.2b is given by
an integral of pressure p and volume change�v:

�W D �
I

p�v ds (D.5)

We observe that it is possible to operate the engine in complete cycles. The
efficiency of the reversible engine under the Carnot cycle is � D 1.

We next consider a parallel operation of a reversible engine A and another engine
B of an arbitrary efficiency (Fig. D.3). The engine B takes up heat �Q1 from
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Fig. D.3 Reversible engine
A being driven backwards by
engine B (Feynman et al.
1963)

the high temperature heat source T1 and performs work �W� in which �W is
transferred to engine A working in parallel. The assumption �W� > �W would
indicate that engine B could perform external work �W� ��W . Recall that the
heat transferred from engine B to the low temperature heat source T2 is�Q1��W�.
Since engine A is reversible, it can be operated in the reverse Carnot cycle, taking
�Q1��W from T2 and transferring �Q1 to T1. If we observe the total system
ACB, it works as a perpetual engine, taking heat from the high temperature heat
source to perform the work �W� ��W . Carnot concluded that such a situation is
untenable. Thus we have

�W� 
 �W (D.6)

That is, no engine can work more efficiently than the reversible engine. In the above
discussions we can exchange engine A with B, therefore the conclusion of Carnot
is that the efficiency of all reversible engines is the same, and it depends only on T1
and T2. Thus the efficiency of a reversible engine can be defined as

� D �W
�Q1

D 1 � �Q2

�Q1

D 1 � f .T1; T2/ (D.7)

where f .T1; T2/ is tentatively called the efficiency function.
Let us introduce a double Carnot cycle (1) and (2) as shown in Fig. D.4. The

cycle (1) traverses a!b!c!f!a, and the efficiency function is

�Q2

�Q1

D f .T1; T2/:

The cycle (2) traverses f!c!d!e!f, and the efficiency function is

�Q3

�Q2

D f .T2; T3/:

If we consider the cycle (1) C (2), it traverses a!b!c!d!e!f!a, therefore the
efficiency function is
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Fig. D.4 Double Carnot
cycle

�Q3

�Q1

D f .T1; T3/:

In order to satisfy this relation we must have a function F.T / such that

f .T1; T2/ D F.T2/

F.T1/
;

then the efficiency function for the cycle (1) + (2) can be correctly described as

�Q3

�Q1

D �Q2

�Q1

�Q3

�Q2

D F.T2/

F.T1/

F.T3/

F.T2/
D F.T3/

F.T1/
:

Following Lord Kelvin (W. Thomson) we redefine the functionF.T / as the absolute
temperature T (F.T / D T ). The efficiency of the engine is now written as

� D 1 � �Q2

�Q1

D 1 � T2

T1
: (D.8)

Alternatively (D.8) is
�Q1

T1
D �Q2

T2
:

For a more generalized cycle, the efficiency of the reversible engine can be written
in an integral form as

X �Q
T

D 0 )
I
dQ
T

D 0 (D.9)

D.2.2 Entropy as a State Variable

Equation D.9 shows that in the “reversible process” we can introduce an increment
of the state variable S, called the entropy, for the heat flux dQ by
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Fig. D.5 Integral path and
entropy

dS D dQ
T
: (D.10)

As an example, let us consider two integral paths 1 and 2 from the initial state A to
the final state B as shown in Fig. D.5. For a reversible process we require

Z B

A;1

dQ
T

C
Z A

B;2

dQ
T

D 0 )
Z B

A;1

dQ
T

D
Z B

A;2

dQ
T
:

This implies that the difference in S between the state B and the state A is
independent of the integration path:

SB � SA D
Z B

A

dQ
T
: (D.11)

In conclusion, for a reversible process, the heat flux dQ input to the system is
exchanged through a corresponding thermal internal energy increment T dS, and S
is independent on the path of integration. This entropy increment can also be written
as dSe , since Se is exchangeable with the surroundings and reversible. Then (D.10)
can be written as

dQ D T dSe: (D.12)

The idea of exchangeable entropy is also supported by Boltzmann’s theory based
on statistical thermodynamics (see Appendix D.3). That is, Boltzmann’s principle
can be shown as

Se D kB lnW (D.13)

where kB is Boltzmann’s constant and W is the thermodynamic weight of configu-
ration of the macroscopic state.

D.3 Interpretation of Entropy within the Framework
of Statistical Thermodynamics: Boltzmann’s Theory |

At the end of nineteenth century, based on a concept of probabilistic distribution
of energy states, Ludwig Boltzmann (1844–1906) presented an innovative interpre-
tation that the entropy S is the most feasible number of microscopic energy states
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under a given macroscopic environment; i.e., if W is the thermodynamic weight of
configuration of the macroscopic state, the relation S D kB lnW holds, where kB
is Boltzmann’s constant. This is referred to as Boltzmann’s Principle.

In this section an interpretation of entropy based on statistical thermodynamics
is presented following Schrödinger (1952) and Atkins and Paula (2010).

D.3.1 Statistical Representation of Molecular States
and Boltzmann Distribution

The thermodynamical system treated is assumed to be closed and consists of an
equal number of molecules (uniform population). The total number of molecules
is N , and the total energy of this system is E , which is the sum of energy of
all molecules. The quantum mechanics theory indicates that the energy state of
each molecule is discrete (see, e.g., McQuarrie and Simon 1997). Suppose an
instantaneous configuration of the system occurs that corresponds to each energy
level f"0; "1; "2; : : :g where there exist fn0; n1; n2; : : :g molecules, respectively (the
reason that the energy level starts with "0 is that it corresponds to the ground state).
The total number of molecules and the total energy are kept constant:

X

iD0
ni D N;

X

iD0
ni "i D E : (D.14)

Since all the molecules were originally the same, the number of combinations such
that an instantaneous configuration is satisfied is given by

W D NŠ

n0Š n1Š n2Š � � � (D.15)

This W is referred to as the weight of configurations.
Taking the logarithm of (D.15) yields

lnW D lnNŠ�
X

i

ln ni Š

Since N is an extremely large number, Stirling’s approximation1 can be applied to
give

1Stirling’s approximation can be proved as follows:

ln xŠ D ln 1C ln 2C ln 3C � � � ln xD
xX

iD1

lnyi '
Z x

0

lny dyD.y lny � y/

ˇ
ˇ
ˇ
x

0
D x lnx � x:
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lnW ' N lnN �
X

i

ni lnni : (D.16)

In these combinations of W , the dominant configuration can be determined by
maximizingW :

dW.ni / D 0 ) d.lnW / D 0 (D.17)

and the restrictions (D.14) are introduced via the Lagrangian multiplier method:

d.lnW / D
X

i

�
@.lnW /

@ni
C ˛ � ˇ"i

�

dni D 0

where ˛; ˇ are Lagrangian multipliers. Thus we have

@.lnW /

@ni
C ˛ � ˇ"i D 0 (D.18)

and substituting (D.16) into the above gives

� lnN C lnni D ˛ � ˇ"i ) ni

N
D e˛�ˇ"i

We sum this up to obtain e˛ D 1=
P

j e
�ˇ"j since

P
i ni D N . Thus the following

Boltzmann distribution for the molecular state pi D ni=N is obtained:

pi D 1

q
e�ˇ"i I q D

X

j

e�ˇ"j (D.19)

where q is referred to as the molecular partition function, which indicates the mea-
sure of thermodynamically admissible states. Note that the Lagrangian multiplier ˇ
is shown later to be ˇ D 1=kBT .

D.3.2 Molecular Partition Function q

When the molecular partition function q is defined as (D.19)3, each energy level
f"0; "1; "2; : : :g corresponding to each state fn0; n1; n2; : : :g is assumed to be
different. However in practice there exist molecular states such that the energy levels
become the same, therefore we can modify (D.19)2 to

q D
X

gj e
�ˇ"i (D.20)

where gj is the partition coefficient which implies a gj -fold degeneration in the
energy level "i .
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Assuming ˇ D 1=kBT , let us consider the case where the temperature
approaches absolute zero degrees. We set the ground state "0 of energy as T ! 0.
Since q is divergent if "0¤0 as T ! 0, we have the conditions

"0 	 0; lim
T!0

q D g0: (D.21)

On the other hand as T ! 1, the combination of the energy states must be infinite:

lim
T!1 q D 1: (D.22)

In this particular case, if the energy levels are distributed uniformly, we have

q D 1C e�ˇ" C e�2ˇ" C e�3ˇ" C � � � D 1

1 � e�ˇ" ; (D.23)

and the Boltzmann distribution is calculated as

pi D .1 � e�ˇ"/ e�iˇ": (D.24)

If we apply the free particle solution En in a one-dimensional domain .0; L/, which
will be shown in (D.47) to obtain the ground state energy " D E1 D h2=8mL2, the
partition function can be calculated as

"n D .n2 � 1/" ) q D
1X

nD1
e�.n2�1/ˇ" (D.25)

The sum in this equation is replaced by an integral form and we assume n � 1,
therefore we obtain

q D
Z 1

1

e�.n2�1/ˇ" dn '
Z 1

0

e�n2ˇ" dn:

We then set n2ˇ" D x2 ) dn D dx=
p
ˇ" and integrate the above to obtain

q D 1
p
ˇ"

�
p
�

2
D 1

ƒ
L; ƒ D h

�
ˇ

2�m

�1=2
(D.26)

where ƒ is referred to as the thermal wave length. If we extend (D.26) into the
three-dimensional domain V D L1L2L3, we obtain

q D 1

ƒ3
V: (D.27)
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D.3.3 Internal Energy and Entropy: Boltzmann’s Formula

Substituting the total energy of the system E of (D.14)2 into the Boltzmann
distribution (D.19) yields

E D N

q

X

i

e�ˇ"i D �N
q

X

i

de�ˇ"i
dˇ

D �N d.ln q/
dˇ

where ˇ is a function of the temperature. On the other hand, E is not only a function
of the temperature but also the volume V of the system and other factors, therefore
we write the above equation as

E D �
�

N
d.ln q/

dˇ

�

V

: (D.28)

Substituting the partition function (D.27) for the case of equi-difference energy, and
differentiating this (recalling (D.26)2), we obtain the following expression for the
total energy:

E D �
�

N
d.ln q/

dˇ

�

V

D 3NV

qƒ4

@ƒ

@̌
D 3N

2ˇ
: (D.29)

As described in Sect. 3.2.1, the total energy E consists of the kinetic energy K
and the internal energy U . However, in the system considered here, the change of
the kinetic energy of molecules induces changes in the temperature and the volume,
such that the kinetic energy is not treated directly, and the total energy is converted
into internal energy. Thus we have

U D E D
X

iD0
ni "i : (D.30)

Here we should note that "0 corresponds to the energy at the ground state.
Substituting this into (D.29), we obtain

U D 3N

2ˇ
: (D.31)

On the other hand, as shown in (E.63) for a perfect gas, we have

U D 3

2
nRT

where n is the total amount of substance. If we compare this with (D.31), we have

ˇ D 1

kBT
(D.32)
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where kB is Boltzmann’s constant, and kB D R=NA for an ideal gas (cf.
Appendix E.5).

As understood by (D.30) the change of internal energy dU is induced by a
change of the energy state d"i and/or by a change of the number of molecules dni
belonging to that energy level. In quantum mechanics, it is known that the pressure
applied induces d"i and the heating induces dni . Now we consider the change due
to heating

dU D
X

iD0
"i dni D dQ D T dSe;

and using (D.32) we have

dSe D dU
T

D kB ˇ
X

iD0
"i dni (D.33)

Substituting (D.18) into this yields

dSe D kB
X

iD0

@.lnW /

@ni
dni C kB ˛

X

iD0
dni

Note that since we treat a closed system,
P

i dni D 0. Thus we obtain the following
Boltzmann formula:

dSe D kB d.lnW / ) Se D kB lnW: (D.34)

Substituting (D.16) into (D.34), we obtain

Se ' kB
X

i

.ni lnN � ni lnni / D �N kB
X

i

pi ln q: (D.35)

Alternatively, from (D.19) we have

lnpi D �ˇ"i � ln q:

Substituting the above into (D.35), we obtain the Boltzmann formula of the
molecular partition function as

Se D U
T

CN kB ln q (D.36)

where we use the relation
P

i ni "i D E D U , kB ˇ D 1=T .

Note D.1 (Schrödinger equation and the free particle problem). The Schrödinger
equation specifies the quantum state of a particle: It is considered in the one-
dimensional state for simplicity (for more general cases see, e.g., McQuarrie and
Simon 1997, p. 73).
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The one-dimensional wave equation can be written as

@2u

@x2
D 1

v2
@2u

@t2
(D.37)

where v is the phase velocity. We consider harmonic motions with a circular
frequency !, and assume solutions of (D.37) of the form u.x; t/ D  .x/ cos!t .
This gives an ordinary differential equation in the spatial coordinate x for .x/; i.e.,

d2 

dx2
C 4�2

�2
 .x/ D 0 (D.38)

where we set ! D 2�� and �� D v (� is the frequency and � is the wavelength).
In 1924 Louis de Broglie discovered that every particle of a massm shows wave-

particle duality. Let the linear momentum of the particle be p D mv, then the total
energy is given by

E D p2

2m
C V.x/ (D.39)

where V.x/ is the potential energy. The linear momentum then becomes

p D f2m.E � V /g1=2: (D.40)

Alternatively, Einstein’s relationship relates the wavelength of light � to the linear
momentum p according to � D h=p (where h D 6:626 � 10�34 [J�s] is the Planck
constant). De Broglie applied this to the material wave of the massm to obtain

� D h

p
D h

mv
(D.41)

The above is referred to as the de Broglie relation. Using (D.40) and (D.41) we have

� D h

f2m.E � V /g1=2 ) 1

�2
D 1

h2
f2m.E � V /g

and substituting this into (D.38) we obtain the following time-independent
Schrödinger equation:

OH  .x/ D E  .x/; OH D � „
2m

d2

dx2
C V.x/ (D.42)

where OH is Hamilton’s operator and „ D h=2� .
We can extend this time-independent Schrödinger equation to obtain the time-

dependent Schrödinger equation:

OH ‰.x; t/ D i „@‰.x; t/
@t

(D.43)
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(i D p�1 is the imaginary unit). If we introduce the separation of variable
‰.x; t/ D  .x/f .t/ and set

E D 1

 .x/
OH  .x/ D i „

f .t/

df .t/

dt

we obtain the following two ordinary differential equations:

OH  .x/ D E  .x/;
df .t/

dt
D � i„E f .t/:

The first one is equivalent to the time-independent Schrödinger equation (D.42).
Let us solve the simplest problem, referred to as the free particle problem, which

treats the motion of a particle whose potential energy can be ignored (V.x/ D 0).
The spatial domain is .0; L/, and the two-point boundary value problem is

d2 

dx2
C 2mE

„  .x/ D 0; 0 
 x 
 L (D.44)

BC:  .0/ D  .L/ D 0: (D.45)

The general solution of this is

 .x/ D A cos kx C B sin kx; k D
�
2mE

„
�1=2

D
�
4�mE

h

�1=2
(D.46)

and the boundary condition  .0/ D 0 gives A 	 0, and the boundary condition
 .L/ D 0 gives the eigenvalues

kL D n�; n D 1; 2; � � �

Substituting this into (D.46)2, we obtain the quantized energyEn for the free particle
problem as

En D n2�h2

4mL2
; n D 1; 2; � � � (D.47)

The three-dimensional time-independent Schrödinger equation is given by

OH ‰.x; t/ D i „@‰.x; t/
@t

; OH D � „
2m

�C V.x/ (D.48)

where � D @2 =@xi@xi is Laplace’s operator. The time-dependent Schrödinger
equation is similarly obtained as

OH  .x/ D E  .x/: (D.49)
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The quantized energy for the three-dimensional free particle problem (V.x/ D 0)
can be calculated as

En D �h2

4m

3X

iD1

�
ni

Li

�2
; ni D 1; 2; � � � � (D.50)

D.4 Entropy Production: Second Part of the Second Law of
Thermodynamics

The phenomenon that mechanical energy can be converted into heat through friction
is a common observation. The Second Law of Thermodynamics states that in
addition to such an energy exchange process, there exists an autonomous mechanism
to increase the entropy due to the disturbance of the internal structure or order.

D.4.1 Second Law of Thermodynamics for the Irreversible
Process

In Appendix D.1 we showed that in a reversible process the energy increment that
is exchangeable with its surroundings is formed by temperature and entropy change
(we referred to this as the first part of the Second Law). We now discuss the second
part of the Second Law, which states that in an irreversible process the entropy
increases.

Carnot (1824) concluded that in an irreversible process, the efficiency � of a heat
engine is always less than unity, which gives the second part of the Second law.
That is, in the irreversible process the rate of absorption of heat�Q1 from the high
temperature source that is converted to work becomes smaller than in a reversible
process, and the heat output increases; therefore, from (D.4) we have

� D 1 � �Q irr
2

�Q1

< 1 � T2

T1
) �Q1

T1
<
�Qirr

2

T2

We rewrite this as

dS > dQ
T
: (D.51)

This is referred to as the Clausius inequality, and implies that in an irreversible
process the entropy increases. The heat supply dQ is therefore not completely
converted into the heat component of the internal energy T dS. This is the essential
concept of the second part of the Second Law of Thermodynamics.

In an isolated system dQe D 0, and if we assume that the internal heat flux
dQi also vanishes (i.e., dQi D 0 at the equilibrium state), we have dS D 0. This
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implies that S approaches the (local) maximum (since S is increasing). That is, at
the equilibrium state of the isolated system, with no internal heat source, we have

dS D 0 at S D Smax (D.52)

and, in the course of an irreversible process, the entropy increases towards the above
state: i.e.

dS > 0: (D.53)

Note D.2 (Entropy increase in the isolated system). In the isolated system dQe D
0 as mentioned above, however, the flux dQi caused by some internal heat
source is not always zero. Furthermore, it is not completely obvious whether
or not an “irreversible process” which satisfies the inequality (D.51) exists in
an isolated system (as mentioned in Appendix D.3, Boltzmann’s interpretation of
entropy Se D kB lnW also relates the exchangeable part of entropy Se with the
molecular configurationW ). Any experiment to verify the inequality (D.51) for the
isolated system poses an interesting physical observation problem, since it is almost
impossible to measure the state of the isolated system by using a sensor ‘inserted’
into the system without introducing some disturbance.

At present it is not possible to prove that entropy increases, therefore we here
follow classical thermodynamics and assume that in an irreversible process the
inequality (D.51) is satisfied even for an isolated system. �
For the general case with a heat source dQ the entropy change is divided
into two paths, the autonomous internal change and that part affected by the
external heat supply, attributed to Prigogine (1967), which will be discussed in
the Appendix D.4.2. In this case the inequality (D.53) gives some of the entropy
corresponding to the internal change.

D.4.2 Entropy Production

Let us reconsider the Second Law of Thermodynamics (cf. Kondepudi and
Prigogine 1998). We partition the entropy change into dSe due to the exchange
of energy and/or material with the surroundings and dS i due to the irreversible
process in the system itself: i.e.

dS D dSe C dS i (D.54)

where dS i is the entropy production. Combining the inequality (D.51) for the
irreversible process and the equality (D.10) for the reversible process we have the
following inequality for all processes:

dS � dQ
T
: (D.55)
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However, since

dSe D dQ
T

(D.56)

the Second Law of Thermodynamics implies that for any system, either isolated,
closed or open, the entropy production dS i is non-negative:

Second Law of Thermodynamics: dS D dSe C dS i ; dSe D dQ
T
; dS i � 0:

(D.57)
The result (D.57) suggests (whether it is correct or not) that the system, even if

it is isolated, involves an internal change. Considering the equilibrium state of an
isolated system in which no internal heat source dQi exists, we have

Equilibrium process in the isolated system: dS D 0: (D.58)

Thus, in the irreversible process approaching the equilibrium state, the entropy is
increasing (dS>0), while at the equilibrium state, it reaches a maximum. Note that
for a closed or open system entropy can decrease in general if some energy flux is
applied to the system.

Combining the First Law of Thermodynamics (3.40) and the Second Law of
Thermodynamics discussed above, we can summarize the laws governing non-
equilibrium thermodynamics as follows:

dE D dK C dU D dW C dQ (D.59)

dS D dS i C dSe (D.60)

dS i � 0; dSe D dQ
T
: (D.61)

If Stokes’ power formula is satisfied (cf. Sect. 3.2.4), the above formulae can then
be modified as follows:

dK C dU� D dW and dU D dU� C dQ (D.62)

dS D dS i C dSe (D.63)

dS i � 0; dSe D dQ
T
: (D.64)

The closed system in which no material has been exchanged is schematically
drawn as shown in Fig. D.6. The open system with material exchange can be
configured in a similar manner.

Note D.3 (Internal dissipation and Clausius-Duhem inequality). The Second Law
of Thermodynamics is considered in terms of the dissipation of internal structure.
Referring to the definition of entropy (D.10) and its effects for a reversible process
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Fig. D.6 Dissipative
structure for a closed system
(cf. Stumm and Morgan
1996)

and recalling that T dS corresponds to the change of internal energy and that dQ
is the heat supply from the surroundings, we can define the following internal
dissipation for any reversible and irreversible process;

dD D T dS � dQ: (D.65)

Referring to (D.60) we understand that the Second Law requires that the internal
dissipation should be non-negative: i.e.

dD D T dS � dQ D T dS i � 0 (D.66)

This is referred to as the Clausius-Duhem inequality.
It should be noted that the Clausius-Duhem inequality, giving the condition of

internal dissipation, is exclusively satisfied for the equality part by the reversible
process and for the pure inequality part by the irreversible process. The equality of
the non-negative condition is not satisfied for the ‘pure irreversible process’. �

The above discussions treat the change of entropy, and do not give an absolute value
of entropy. In 1918 Nernst showed that in its uniform state a material at absolute zero
temperature has zero entropy (English version: Nernst 1969). This is referred to as
the Nernst-Planck theorem or the Third Law of Thermodynamics (cf. Appendix D.3).

Example D.1 (Heat conduction problem). Let us consider an isolated system that
consists of two parts, Cell 1 and Cell 2 (Fig. D.7). The temperature of Cell 1 is
assumed to be T1, and temperature of Cell 2 to be T2 (T1 > T2). The heat flux
flowing from Cell 1 to Cell 2 is given as dQ. Since there is no heat exchange and
no volume change in the isolated system, dSe D 0 and dW D 0. Thus the change
of internal energy of each part is equal to the heat supply:
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Fig. D.7 Heat transfer in an
isolated system

dU1 D dQ1; dU2 D dQ2:

Applying the First Law of Thermodynamics to the total system we have dQ D
dQ2 D �dQ1. Thus the entropy production of the total system is

dS D dS i D �dQ
T1

CdQ
T2

D
�
1

T2
� 1

T1

�

dQ; or
dS i
dt

D
�
1

T2
� 1

T1

�
dQ
dt
:

(D.67)
In the classical irreversible thermodynamics (CIT) theory, the local equilibrium
condition is applied, and T1 and T2 remain constant in each cell. This results
in a strong inconsistency when applying CIT to the non-equilibrium problem. It
should be noted that in our procedure the conditions of local equilibrium and
constant temperature in each cell are not required, because (D.59)–(D.61) are
applied directly.

The heat flux q D dQ=dt is related to the temperature gradient by Fourier’s law

q D �krT (D.68)

where k is the thermal conductivity tensor, which is a second-order tensor and is
reduced to Kij D k ıij if the material is isotropic (k is the thermal conductivity).

Let the ‘thermal distance’ between Cell 1 and Cell 2 be �x. Thus, dT=dx D
.T1�T2/=�x is negative, and Fourier’s law can be written as

dQ
dt

D k
T1 � T2

�x

where k>0 is the thermal conductivity. Note that in a system where the subsystems
are clearly separated with temperatures T1 and T2, we can assume that dQ=dt D
k.T1�T2/. By using (D.67) the entropy production is given as

dS i
dt

D
�
1

T2
� 1

T1

�

k
T1 � T2
�x

D k .T1 � T2/
2

T1T2�x
� 0: (D.69)

This implies that the non-negativeness of entropy production is equivalent to the
non-negativeness of the thermal conductivity k. At the final equilibrium state
the temperature of both subsystems becomes the same, and therefore the entropy
production is zero. �
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D.4.3 Second Law of Thermodynamics and the Minimum
Energy Principle

The minimum energy principle in the closed system is derived from the First and
Second Laws of Thermodynamics. Since dQ D TdSe , we have

dE D T dSe C dW D T dS � T dS i C dW : (D.70)

We treat here a closed system, so that the volume does not change (dW D 0). If the
heat supply dQ D TdSe is controlled as the total entropy in the system is constant
(dS D 0), the total energy increment is

dE D �T dS i 
 0: (D.71)

That is, in a system of constant entropy and constant volume the process moves
towards the direction of minimum energy. This gives the Principle of Minimum
Energy for the irreversible process, which is deduced from the Second Law of
Thermodynamics.

D.4.4 Second Law of Thermodynamics in a Thermo-
mechanical Continuum: Eulerian Description

Assume that, corresponding to the entropy S of a body, there exists an entropy
density function s, measured per unit mass of a continuum, such that

S D
Z




� s.x; t/ dv: (D.72)

As mentioned in Appendix D.4.2, the entropy change dS of a system consists of
two parts in the form dS D dSeCdS i , where dSe is due to an energy exchange
with the surroundings and dS i is due to an internal irreversible process, so that the
Second Law of Thermodynamics can be written as dS i �0.

This can be applied to the continuum as understood from the definition of s
(D.72). That is, the change of entropy ds is divided into two parts as ds D dseCdsi ,
where dse is a result of energy exchange, and dsi is the internal entropy production.
For the reversible process dsi D 0 and for the irreversible process dsi >0. Thus the
Second Law of Thermodynamics for the continuum can be written as

Second Law of Thermodynamics: ds D dse C dsi ; dsi � 0: (D.73)

Note that CIT may be able to come to the same conclusion; however, it is important
that we do not require the assumption of a local-equilibrium. Since the Second
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Law is used here as a working hypothesis in the local form, we can introduce this
inequality locally.

If no chemical processes are considered, the change of internal energy is caused
by the deformation and the change of entropy dse , which is the exchangeable part
with the surroundings. Thus we have

du

dt
D � 
 W De C T

dse

dt
: (D.74)

This is one of the most important results of non-equilibrium thermodynamics.
By substituting this result (D.74) into (D.73) under ds D dseCdsi we obtain the

following entropy production inequality for the non-chemical process:

� � T
dsi

dt
D �

�
du

dt
� T

ds

dt

�

� � � 
 W De 
 0: (D.75)

Substituting the dissipation equation (D.75) into (3.50), we obtain

ds

dt
.x; t/ � 1

T
� 
 W Di � 1

� T
divq C r

T
: (D.76)

This gives the Eulerian form of the Second Law of Thermodynamics for the
continuum, also referred to as the Clausius-Duhem inequality. Note that the first
term of the r.h.s. of (D.76) is a consequence of the internal dissipation in mechanical
energy. It should also be noted that the equality is provided for reversible processes
whereas the pure inequality is applicable to irreversible processes.

In many articles we find the following discussions on the temperature-
independent process: Since (D.76) accounts for the dissipation, the equality is
satisfied, and the dissipation term, excluding the thermal terms, must be positive
(� 
 W Di �0). This might be true; however, here we state only that (D.76) is true as
a result of the Second Law of Thermodynamics.

In a closed system if the kinetic energy density � defined by (3.19)2 and the
internal energy density u are used, the inequality (D.71) is reduced to

d� C du D �T dsi 
 0: (D.77)

Thus the minimum energy principle is also given for the continuum.



Appendix E
Chemical Processes and Classical
Thermodynamics

In most textbooks on chemical physics and thermodynamics, field variables are not
given in the form of variables per unit mass or per unit volume but in the form of
variables per mole. In this section we follow the basis of classical chemical physics.

E.1 Molar Description of Thermodynamic Functions

Both descriptions in continuum mechanics and in classical chemistry are listed as
follows (note that since the inelastic volume change is small enough, the volume V
is used instead of V e for the conventional notations):

Field variables (Continuum mechanics) (Molar description)
Strain/volume " V

Stress/pressure � 
 P

Exchangeable entropy se Se

Temperature T T

Chemical potential �


˛ �˛

Concentration/amount of substance c˛ n˛
Heat flux dq dQ

Here Se is the exchangeable entropy in the molar description. Note that the internal
energy per unit mass u [J/M] (M is the unit of mass) is related to the internal energy
per unit substance U [J/mol] by m u D U where m is the molecular weight. Most
of the textbooks using the molar description employ the pressure p (compression
positive) instead of stress � (cf. Sect. 3.2.4). We here use the pressureP and volume
V (expansion positive) in the molar descriptions.

Y. Ichikawa and A.P.S. Selvadurai, Transport Phenomena in Porous Media,
DOI 10.1007/978-3-642-25333-1, © Springer-Verlag Berlin Heidelberg 2012
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1. Field of volume/pressure and entropy/temperature

Thermodynamic functions (Continuum mechanics) (Molar description)
Internal energy u."e; se/ U.V; Se/

Helmholtz free energy f ."; T / F.V; T /

Enthalpy h.� 
; se/ H.P; Se/

Gibbs free energy g.� 
; T / G.P; T /

Change of internal energy

dU.V; Se/ D �P dV C T dSe; P D �@U
@V

; T D @U

@Se
: (E.1)

Helmholtz free energy

F.V; T / D U.V; Se/� TSe; (E.2)

dF D dU � d.TSe/ D �PdV � Se dT; P D �@F
@V
; Se D �@F

@T
:

(E.3)

Enthalpy

H.P; Se/ D U.V; Se/C PV; (E.4)

dH D dU � d.PV / D T dSe C V dP; V D @H

@P
; T D @H

@Se
: (E.5)

Gibbs free energy

G.P; T / D H.P; Se/� TSe D F.V; T /C PV D U.V; Se/C PV � TSe;

(E.6)

dG D dU C d.PV / � d.TSe/ D V dP � Se dT; V D @G

@P
; Se D �@G

@T
:

(E.7)

2. Field with chemical process

Thermodynamic functions (Continuum mechanics) (Molar description)
Internal energy u."; s; c˛/ U.V; Se; n˛/

Helmholtz free energy f ."; T; c˛/ F.V; T; n˛/

Enthalpy h.� 
; s; c˛/ H.P; Se; n˛/

Gibbs free energy g.� 
; T; c˛/ G.P; T; n˛/

Grand potential �."; T; �


˛/ ˆ.V; T; �˛/



E.1 Molar Description of Thermodynamic Functions 341

Change of internal energy

dU.V; Se; n˛/ D �P dV C T dSe C
X

˛

�˛ dn˛; (E.8)

P D �@U
@V

ˇ
ˇ
ˇ
ˇ
Se; n˛

; T D @U

@Se

ˇ
ˇ
ˇ
ˇ
V; n˛

; �˛ D @U

@n˛

ˇ
ˇ
ˇ
ˇ
V; Se

(E.9)

Euler’s equation
U D �PV C TSe C

X

˛

�˛ n˛ (E.10)

Gibbs–Duhem relation

� V dP C Se dT C
X

˛

n˛ d�˛ D 0 (E.11)

Helmholtz free energy

F.V; T; n˛/ D U.V; Se; n˛/� TSe D �PV C
X

˛

�˛ n˛ (E.12)

dF D �P dV � Se dT C
X

˛

�˛ dn˛; (E.13)

P D �@F
@V

ˇ
ˇ
ˇ
ˇ
T; n˛

; Se D �@F
@T

ˇ
ˇ
ˇ
ˇ
n˛; V

; �˛ D @F

@n˛

ˇ
ˇ
ˇ
ˇ
V; T

(E.14)

Enthalpy

H.P; Se; n˛/ D U.V; Se; n˛/C PV D TSe C
X

˛

�˛ n˛ (E.15)

dH D V dP C T dSe C
X

˛

�˛ dn˛; (E.16)

V D @H

@P

ˇ
ˇ
ˇ
ˇ
Se; n˛

; T D @H

@Se

ˇ
ˇ
ˇ
ˇ
n˛; P

; �˛ D @H

@n˛

ˇ
ˇ
ˇ
ˇ
P; Se

(E.17)

Gibbs free energy

G.P; T; n˛/ D H.P; Se; n˛/�TSeDU.V; Se; n˛/� TSe C PVD
X

˛

�˛ n˛ (E.18)

dG D V dP � Se dT C
X

˛

�˛ dn˛; (E.19)

V D @G

@P

ˇ
ˇ
ˇ
ˇ
T; n˛

; Se D �@G
@T

ˇ
ˇ
ˇ
ˇ
n˛; P

; �˛ D @G

@n˛

ˇ
ˇ
ˇ
ˇ
P; T

(E.20)
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Grand potential

ˆ.V; T; �˛/ D U.V; Se; n˛/ � TSe �
X

˛

�˛ n˛ D �PV (E.21)

dˆ D �P dV � Se dT �
X

˛

n˛ d�˛; (E.22)

P D �@ˆ
@V

ˇ
ˇ
ˇ
ˇ
T;�˛

; Se D �@ˆ
@T

ˇ
ˇ
ˇ
ˇ
�˛; V

; n˛ D � @ˆ

@�˛

ˇ
ˇ
ˇ
ˇ
V; T

(E.23)

Maxwell’s relations

@P

@Se

ˇ
ˇ
ˇ
ˇ
n˛; V

D @T

@V

ˇ
ˇ
ˇ
ˇ
Se; n˛

;
@T

@n˛

ˇ
ˇ
ˇ
ˇ
V; Se

D @�˛

@Se

ˇ
ˇ
ˇ
ˇ
n˛; V

;
@�˛

@V

ˇ
ˇ
ˇ
ˇ
Se; n˛

D @P

@n˛

ˇ
ˇ
ˇ
ˇ
V; Se

;

(E.24)

@P

@T

ˇ
ˇ
ˇ
ˇ
n˛; V

D �@S
e

@V

ˇ
ˇ
ˇ
ˇ
T; n˛

; �@S
e

@n˛

ˇ
ˇ
ˇ
ˇ
V; T

D @�˛

@T

ˇ
ˇ
ˇ
ˇ
n˛; V

;
@�˛

@V

ˇ
ˇ
ˇ
ˇ
T; n˛

D @P

@n˛

ˇ
ˇ
ˇ
ˇ
V; T

;

(E.25)

� @V

@Se

ˇ
ˇ
ˇ
ˇ
n˛; P

D @T

@P

ˇ
ˇ
ˇ
ˇ
Se; n˛

;
@T

@n˛

ˇ
ˇ
ˇ
ˇ
P; Se

D @�˛

@Se

ˇ
ˇ
ˇ
ˇ
n˛; P

;
@�˛

@P

ˇ
ˇ
ˇ
ˇ
Se; n˛

D � @V

@n˛

ˇ
ˇ
ˇ
ˇ
P; Se

;

(E.26)

�@V
@T

ˇ
ˇ
ˇ
ˇ
n˛; P

D �@S
e

@P

ˇ
ˇ
ˇ
ˇ
T; n˛

; �@S
e

@n˛

ˇ
ˇ
ˇ
ˇ
P; T

D @�˛

@T

ˇ
ˇ
ˇ
ˇ
n˛; P

;
@�˛

@P

ˇ
ˇ
ˇ
ˇ
T; n˛

D � @V

@n˛

ˇ
ˇ
ˇ
ˇ
P; T

;

(E.27)

@P

@T

ˇ
ˇ
ˇ
ˇ
�˛; V

D �@S
e

@V

ˇ
ˇ
ˇ
ˇ
T;�˛

; � @S
e

@�˛

ˇ
ˇ
ˇ
ˇ
V; T

D �@n˛
@T

ˇ
ˇ
ˇ
ˇ
�˛; V

; �@n˛
@V

ˇ
ˇ
ˇ
ˇ
T;�˛

D @P

@�˛

ˇ
ˇ
ˇ
ˇ
V; T

:

(E.28)

@U

@V

ˇ
ˇ
ˇ
ˇ
T

D �T 2 @.P=T /
@T

ˇ
ˇ
ˇ
ˇ
V

: (E.29)

Gibbs-Helmholtz relation

@

@T

�
G

T

�

D �H
T 2

or
@

@T

�
�G

T

�

D ��H
T 2

(E.30)

E.2 Heat of Reaction and Change of Enthalpy

We consider the relation between the reaction heat and the change of enthalpy. As
shown by r.h.s. of (E.15),H.� ; Se; n˛/ is the energy due to heat and mass exchange
(cf. Note 3.11, p. 115). Thus the chemical processes accompanying reaction heat
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such as combustion, formation, fusion and vaporization are formulated by using the
enthalpy change�H .

Let us consider a reaction at the standard state (P� D 0:1 MPa D 1 bar, T� D
25ıC D 298.15 K):

aA C bB �! cC C dD (E.31)

Original system Reaction system

If the enthalpies of material ˛ .˛ DA, B, C, D) at the standard state are H �̨, the
change in enthalpy due to this reaction is given by

�H� D .H�
C CH�

D / � .H�
A CH�

B /: (E.32)

It is common that values such as the change in enthalpy are obtained by the r.h.s.
value of the reaction system subtracting the l.h.s. value of the original system.�H�
is referred to as the change in standard enthalpy.

Let us generalize the reaction formula (E.31) for No substances of the original
system and Nr substances of the reaction system by

NoX

˛D1
a˛A˛ •

NrX

˛D1
b˛B˛: (E.33)

The change in enthalpy is

�H� D
NrX

˛D1
b˛H

�
B˛

�
NoX

˛D1
a˛H

�
A˛
: (E.34)

If an intermediate reaction is formed during the reaction from the original system
A to the reaction system B such as

A ! I ! II ! B;

the change in enthalpy can be calculated as

�H�
A!B D �H�

A!I C�H�
I!II C�H�

II!B (E.35)

where we set �H�
A!I D H�

I �H�
A , etc. Equation E.35 is referred to as Hess’s law.

There are many types of enthalpy changes, as listed in Table E.1; some typical
enthalpy changes are described below.

The reaction heat of combustion under constant pressure is referred to as the
combustion enthalpy. If the states before and after combustion are kept standard, this
is known as the standard enthalpy of combustion, denoted by �cH

�. For example,
the reaction of the combustion of methane is written as
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Table E.1 Changes of enthalpy (cf. Atkins and Paula 2010)

Transition Process Symbola

Reaction Reactants ! products �rH
�

Formation Elements ! compound �fH
�

Combustion Compound(g,l,s)+O2(g)!CO2(g),H2O(l,g) �cH
�

Atomization Molecule!atoms �atH
�

Ionization X(g)!XC(g)+e� �ionH
�

Cathode reactionb X(g)+e� !X�(g) �egH
�

Activation Reactants ! activated complex �
H�

Transition Phase ˛ ! Phase ˇ �trsH
�

Fusion s!l �fusH
�

Vaporization l!g �vapH
�

Sublimation s!g �subH
�

Mixing of fluids Pure ! mixture �mixH
�

Solution Solute ! solution �solH
�

Hydration X˙(g)!X˙(aq) �hydH
�

aStandard symbols of IUPAC (International Union of Pure and Applied Chemistry)
bCathode reaction implies electron gain. �egH

� denotes the electron gain

CH4(g) C 2O2(g) �! CO2(g) C H2O(l); �cH
� D �890:4 kJ mol�1; 25ıC

where (g) denotes the state of gas and (l) denotes the state of liquid (and the state
of solid is denoted as (s)). Since the above reaction is exothermic, the enthalpy is
decreased if the reaction is toward the r.h.s., which implies that �cH

� is negative.
The reaction heat generated when producing a compound from simple elements

is referred to as the formation enthalpy. If the states before and after formation
are kept standard, this is known as the standard enthalpy of formation, denoted by
�fH

�. In Table E.2 some examples of the above enthalpies are shown.
The standard enthalpy of formation of methane can be calculated by using the

standard enthalpies of formation of CO2 and H2 and the standard enthalpy of the
combustion of methane. That is, since we have

(a) C(s) C O2(g) �! CO2(g) �fH
�.CO2/ D �393:51 kJ mol�1

(b) 2H2(g) C O2(g) �! 2H2O(l) 2�fH
�.H2O/ D 2 � .�285:85/ kJ mol�1

(c) CH4(g) C 2O2(g) �! CO2(g) C H2O(l) �cH
� D �890:4 kJ mol�1;

Hess’s law is applied, as (a)+(b)�(c), to obtain the following thermo-chemical
equation:

C(s) C 2H2(g) �! CH4(g) �fH
�.CH4/ D �74:81 kJ mol�1:
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Table E.2 Examples of thermodynamic data (298 K) (cf. Atkins and Paula 2010)
Compound (state) Molar mass �fH

� �fG
� Se� Cp

g/mol kJ/mol kJ/mol J/mol K J/mol K
CO2(g) 44.010 �393:51 �394:36 213.74 37.11
CH4(g) 16.04 �74:81 �50:72 186.26 35.31
H2O(l) 18.015 �285:83 �237:13 69.91 75.291
H2O(g) 18.015 �241:82 �228:57 188.83 33.58
HCl(g) 36.46 �92:31 �95:30 186.91 29.12
CaCO3(g) 100.09 �1206:9 �1128:8 92.9 81.88
NaCl(s) 58.44 �411:15 �384:14 72.13 50.50
SiO2(s,˛) 60.09 �910:94 �856:64 41.84 44.43
Fe3O4(s,magnetite) 231.54 �1118:4 �1015:4 146.4 143.43

E.3 Change of Entropy

The classical theory of thermodynamics suggests that the state of a system is
governed not only by the First Law of Thermodynamics (energy conservation)
but also by the Second Law of Thermodynamics (increase of entropy). That is,
a reaction of materials in general not only tends to proceed toward a low level
of energy, which implies that the reaction is exothermic but also tends toward
disordering (i.e., toward C�S ). As mentioned in Sect. D.4 the change of entropy
�S consists of the part �Se exchangeable with surroundings and the part �Si

generated autonomously in the system (�S D �SeC�Si ), and, taking this into
consideration, we will examine some chemical processes.

E.3.1 Progress of Chemical Reaction and Change of Entropy

In stoichiometry the l.h.s. terms are transferred to the r.h.s., so that

NX

˛D1
�˛X˛ D 0; (E.36)

�˛ D
(

�a˛ for originals,

b˛ for reactants,
X˛ D

(
�A˛ for originals,

B˛ for reactants,
(E.37)

where N D No CNr , and �˛ is the stoichiometric coefficient.
Since this reaction simultaneously proceeds for all elements X˛ , the change in the

amount of substance of X˛ can be given by the following stoichiometric relation:

dn˛

�˛
	 d� .Š˛/: (E.38)
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Here � is referred to as the extent of reaction, and the reaction rate is given as the
rate of the extent of reaction:

w D d�

dt
: (E.39)

Let the amount of substance of a species X˛ at the start of the reaction be n˛0,
then the amount at the extent � is given by

n˛ D n˛0 C �˛�: (E.40)

Since the amount at � is given by (E.40) and n˛0; �˛ are constant, the internal energy
at � can be represented as

U.V; Se; n˛/ �! U.V; Se; �/ (E.41)

where the extent of reaction is a state variable instead of the molar number. Note
that the heat of reaction r can be calculated by the enthalpyH.P; Se; �/ as

r D @H

@�

ˇ
ˇ
ˇ
ˇ
P;T

: (E.42)

Let us use dS; dSe; dSi instead of �S; �Se; �Si :

dS D dSe C dSi : (E.43)

The change of internal energy is given by (E.8), therefore we have

dU.V; Se; n˛/ D �P dV C T dSe C
X

˛

�˛ dn˛: (E.44)

This gives

dSe D dU C P dV

T
� 1

T

X

˛

�˛ dn˛: (E.45)

The Second Law of Thermodynamics is then

dSi � 0: (E.46)

E.3.2 Affinity and Direction of Reaction

The stoichiometric relation given by (E.38)

dn˛ D �˛ d�
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is substituted into (E.45) to obtain

dSe D dU C P dV

T
C A

T
d� (E.47)

where
A D �

X
�˛ �˛ (E.48)

is the affinity, which represents the driving force of the chemical reaction. By using
the affinity, the change of internal energy given by (E.44) is represented as

dU.V; Se; n˛/ D �P dV C T dSe � Ad�: (E.49)

Let us consider the following reaction:

NoX

˛D1
a˛A˛ •

NrX

˛D1
b˛B˛ )

NX

˛D1
�˛X˛ D 0: (E.50)

At chemical equilibrium the total amount of mass is not changed, therefore the
change of internal energy dUc due to chemical reaction is null:

dUc D
X

˛

�˛ dn˛ D �Ad� D 0:

Thus at chemical equilibrium we have

d�

dt
D 0 or A D �

X

˛

�˛ �˛ D 0

The condition w D d�=dt D 0 implies a state of null reaction rate, which is not
relevant. The non-obvious solution is obtained as A D 0, which implies equilibrium
of the affinity. Thus, in general, the equilibrium condition is given by

A D �
X

˛

�˛ �˛ D 0: (E.51)

The non-equilibrium reactions are classified according to the following four
cases:

d�=dt A dUc

Case 1 > 0 > 0 < 0

Case 2 > 0 < 0 > 0

Case 3 < 0 > 0 < 0

Case 4 < 0 < 0 > 0
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Fig. E.1 Diffusion problem
of closed two-partitioned
domain

Because of (E.50), the products increase and the originals decrease, therefore the
reaction moves to the right (forward reaction) if d�=dt > 0. If products decrease
and the originals increase, the reaction moves to the left (backward reaction) if
d�=dt < 0. On the other hand, if dUc D �Ad�=dt < 0, the reaction is
exothermic, and if dUc > 0, the reaction is endothermic. Thus Case 1 is a forward
exothermic reaction, Case 2 a forward endothermic reaction, Case 3 a backward
exothermic reaction, and Case 4 a backward endothermic reaction.

E.3.3 Change of Entropy and the Diffusion Process

Let us suppose that two parts of substances (Part 1 and 2 of Fig. E.1) of different
concentration are in contact with each other. We can prove that diffusion occurs
from the higher concentration part (Part 1) to the lower concentration part (Part 2)
because of the First Law of Thermodynamics. Here the total system is closed, the
temperature is the same, T , the chemical potentials are �1 and �2 .�1 > �2/, and
the amounts of substance are n1 and n2, respectively. We set the stoichiometric
coefficients of Part 1 and Part 2 as �1 and 1, respectively; thus the extent of reaction
d� is

d� D �dn1 D dn2 > 0:

Let dU D dV D 0, then by (E.45) we have

dSe D ��2 � �1

T
d� > 0: (E.52)

That is, transport of the substance is autonomously caused, which implies ‘diffusion’
from the higher concentration to the lower concentration. It should be noted that this
is a result of the First Law of Thermodynamics.

E.3.4 Changes of Temperature/Pressure/Phase and Entropy

Let us consider a closed system, dn˛ D 0. From (E.8) and (E.16) we have

@Se

@U

ˇ
ˇ
ˇ
ˇ
V

D T �1;
@Se

@H

ˇ
ˇ
ˇ
ˇ
P

D T �1;
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and the changes of entropy under constant volume and constant pressure are
calculated as follows:

@Se

@T

ˇ
ˇ
ˇ
ˇ
V

D @Se

@U

ˇ
ˇ
ˇ
ˇ
V

@U

@T

ˇ
ˇ
ˇ
ˇ
V

D T �1Cv;
@Se

@T

ˇ
ˇ
ˇ
ˇ
P

D @Se

@H

ˇ
ˇ
ˇ
ˇ
P

@H

@T

ˇ
ˇ
ˇ
ˇ
P

D T �1Cp:

Thus if Cv; Cp are known as functions of temperature, the entropies that are
exchangeable with the surroundings are given by

Constant volume: Se D
Z T

0

Cv.T / d.lnT /; (E.53)

Constant pressure: Se D
Z T

0

Cp.T / d.lnT /: (E.54)

Here we assume that, by virtue of the Third Law, the entropy is zero at 0 K.
When a substance undergoes a phase change, heat is adsorbed or discharged

under constant temperature. In general, this change occurs under constant pressure,
therefore�Q D �H . Table E.3 shows the temperature Tfus and change in enthalpy
�fusH for fusion, and the temperature Tvap and change in enthalpy �vapH for
vaporization for several substances; we can calculate the changes in entropy at
fusion and vaporization by

�fusS
e D �fusH

Tfus
; �vapS

e D �vapH

Tvap
: (E.55)

For example, the changes of entropy at fusion and vaporization of water are

�fusS
e.H2O/ D 21:995 J/K mol; �vapS

e.H2O/ D 108:953 J/K mol:

The change of entropy of water is schematically drawn as a function of temperature
in Fig. E.2.

Table E.3 Change in enthalpy at fusion and vaporization

Substance Tfus K �fusH kJ/mol Tvap K �vapH kJ/mol

H2O 273.15 6.008 373.15 40.656
CH3OH 175.2 3.16 337.2 35.27
C2H5OH 156 4.60 351.4 38.56
CH4 90.68 0.941 111.7 8.18
CO2 217.0 8.33 194.6 25.23
N2 63.15 0.719 77.35 5.586
O2 54.36 0.444 90.18 6.820
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Fig. E.2 Entropy change of
water

E.4 Change of Gibbs Free Energy and Chemical Potential

As understood from (E.19), the Gibbs free energy is the energy due to substances
flowing in/out the system:

G.P; T; n˛/ D H.P; Se; n˛/ � TSe D
X

�˛ n˛: (E.56)

Gibbs’ free energy is also a part of energy that is converted to work, but not
converted to heat. We call the process where�G<0 the exergonic reaction, whereas
�G>0 is the endergonic reaction (‘ergon’ implies work).

If the states before and after the reaction are kept standard and the change of
entropy is .�Se/� (change of standard entropy), the change in standard Gibbs free
energy .�Se/� is given by

�G� D �H� � T .�Se/�: (E.57)

In particular, if the compound is generated from simple substances and the states
before and after the reaction are kept standard, we designate �fG

�, which is the
standard Gibbs free energy of formation, as

�fG
� D �fH

� � T .�fS
e/�: (E.58)

Some examples of thermodynamic data are given in Table E.2.
If we know the standard Gibbs energies of formation of each substance for the

original system�fG
�
A˛

and the reaction system�fG
�
B˛

, the change in standard Gibbs
free energy�G� is calculated by

�G� D
NrX

˛D1
b˛�fG

�
B˛

�
NoX

˛D1
a˛�fG

�
A˛
: (E.59)

It is understood from (E.19) that the chemical potential �˛ is equivalent to the
Gibbs free energy per unit mole. In other words we have
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�˛ D @G

@n˛
: (E.60)

Differentiating the Gibbs–Helmholtz relation (E.30) w.r.t. n˛ and applying the above
relation, we obtain

@

@T

�
�˛

T

�

D �Hm˛

T 2
; Hm˛ D @H

@n˛
(E.61)

where Hm˛ is the partial molar enthalpy of species ˛ (cf. Kondepudi and Prigogine
1998, Sect. 5.3, pp. 137 and Sect. 5.5, pp. 142–143).

E.5 Thermodynamics of Gas

The state quantity of a perfect gas can be decided by the following state equation:

PV

T
D nR D NkB (E.62)

where P is the pressure, V is the volume, T is the absolute temperature, n is the
molar number, N is the number of particles of the system, R D NAkB D 8:31

J K�1 mol�1 is the gas constant,NA D 6:0221367�1023 is Avogadro’s number (the
number of particles involved in one mole of substance), kB D R=NA D 1:380658�
10�23 J K�1 is Boltzmann’s constant.

The temperature does not change if the perfect gas, enclosed in an adiabatic
container, is released in a vacuum. This is because the internal energy U of the
perfect gas is simply decided by the temperature, which is kinetic. We can prove
this as follows: Assume that the perfect gas is contained in a cube with rigid walls
of sides L. If the gas molecules undergo elastic collisions at the rigid wall in the
x-direction and the mean velocity of the molecules is Nvx, the change of linear
momentum �LM before and after a collision is 2m Nvx, and the mean free path is
2L, the mean number of collisions Ncol per unit time against the wall is Nvx=2L.
Thus the pressure of the wall area L2 can be calculated by

Px D �LM �Ncol
L2

D nNA � 2m Nvx � Nvx
2L

� 1

L2
:

The motion of the gas molecules is statistically homogeneous in all directions, and
the mean velocity Nv is

Nv2x D 1

3
Nv2:

Set P D Px , and we obtain

PV D 1

3
nNA m Nv2
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where V D L3. Since the perfect gas satisfies the state equation (E.62), the kinetic
energy of n mole of gas is calculated by

K D 1

2
nNA �m Nv2 D 3

2
nRT:

This shows that since the internal energy of the perfect gas is only kinetic energy, it
is a function only of the temperature and we obtain

U D 3

2
nRT: (E.63)

Recall that the kinetic energy of one molecule is given by

3

2
kB T:

Thus Boltzmann’s constant is calculated as

kB D R

NA
D 8:314510

6:0221367� 1023 D 1:380658� 10�23J K�1:

In a reversible process in a perfect gas defined by the state equation (E.62), we
have

dQ D dU C PdV D CvdT C nRTdV

V
: (E.64)

This implies that

dSe D dQ

T
D Cv

dT

T
C nR dV

V
: (E.65)

Thus the change of entropy between the state 1 and the state 2 can be written as

�Se D Se2 � Se1 D
Z 2

1

Cv d.lnT /C
Z 2

1

nR d.lnV /:

Assuming that Cv is independent of the temperature, we have

�Se D Cv ln
T2

T1
C nR ln

V2

V1
: (E.66)

For n mole of perfect gas, the Gibbs–Duhem relation (E.11) gives

d� D �Sem dT C Vm dP; Sem D Se

n
; Vm D V

n
(E.67)

where Sem and Vm are the entropy per unit mole and the volume per unit mole,
respectively. Let us assume that the chemical potential �.P0; T / is known for any
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pressure P0 and temperature T , and we integrate (E.67) under dT D 0, to obtain

u.P; T / D �.P0; T /C
Z P

P0

Vm.P
0; T / dP 0:

For the perfect gas Vm D RT=P , and substituting this into the above equation, we
obtain

�.P; T / D �0.P0; T /CRT ln.P=P0/: (E.68)

For the case of a real gas, we introduce a modification coefficient 	 , which gives

�.f; T / D �0 CRT ln 	P=P0 D �0 CRT lnf=P0 (E.69)

where f D 	P is referred to as the fugacity.
Let us consider a mixture of perfect gases, which is also a perfect gas. In this

case the total energy is given by the sum of each energy, therefore we have

�.P; T / D
X

˛

�˛.P; T /; �˛.P; T / D �0˛.T /CRT lnP˛=P0: (E.70)

Let the molar fraction be x˛ D n˛=n and the partial pressure be P˛ D x˛P , so that
the chemical potential of species ˛ is given by

�˛.P; T; x˛/ D N�˛.P; T /CRT ln x˛=P0; N�˛.P; T / D �0˛.T /CRT lnP=P0
(E.71)

where N�˛.P; T / is the chemical potential of pure gas of species ˛. For the mixture
of real gases we can use the fugacity f˛ D P˛=P of species ˛ to obtain

�˛.P; T; f˛/ D N�˛.P; T /CRT ln f˛=P0: (E.72)

E.6 Diffusion Behavior of Solutions without Inter-molecular
Interaction

In this section we look at several diffusion problems of dilute solutions in which no
inter-molecular interactions are considered.

E.6.1 Chemical Potential

The chemical potential of an ideal solution is given in the same form as that for a
perfect gas (E.71):
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Fig. E.3 Chemical potential
and concentration of solution

�id
˛ .P; T; x˛/ D �0˛.P; T /CRT ln x˛ (E.73)

where �0˛.P; T / is the chemical potential at the standard state.
For the real solution we introduce the activity a˛ as

a˛ D 	˛x˛ .Š˛/ (E.74)

and substituting this into x˛ of (E.73), we obtain the following chemical potential:

�˛.P; T; a˛/ D �0˛.P; T /CRT ln 	˛x˛ D �0˛.P; T /CRT ln a˛ .Š˛/

(E.75)
where 	˛ is the activity coefficient. The difference between the real solution and the
ideal one �E

˛ is referred to as the excess chemical potential:

�E
˛ D �˛ � �id

˛ D RT ln 	˛: (E.76)

These are illustrated in Fig. E.3.

E.6.2 Diffusion Coefficient in an Ideal Solution:
Stokes–Einstein Equation

Let there be a dilute solution in which molecules of the solute do not collide with
each other, and suppose that the molecules of the solute move under viscous drag in
a homogeneous and continuous solvent. Let us consider a solution of two elements,
i.e., one solute and one solvent, and the radius of each molecule of a spherical shape
be R0. Then by Stokes’ law of viscosity, the viscous drag is f v1 D .6� �R0/ v1
where � is the viscosity of the solvent, and f is the viscous coefficient. We can set
this force equivalent to the negative gradient of the chemical potential of the solute:
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� r�1 D f v1 D .6��R0/v1: (E.77)

Let the concentrations of solute and solvent be c1 and c2, respectively. The solution
is assumed to be sufficiently dilute, and it is approximated as an ideal solution:

�1 D �01 CRT ln x1 D �01CRT ln
c1

c1 C c2
' �01CRT ln c1�RT ln c2: (E.78)

Here c1
c2, and we can assume that c2 is constant. Differentiating this, we obtain

r�1 D RT

c1
rc1; (E.79)

and substituting this into (E.77), we obtain the following flux of diffusing concen-
tration:

qm1 D c1v1 D � RT

6� �R0
rc1 .D �Drc1/ (E.80)

where we assume the mean velocity v is zero. Then the diffusion coefficient D can
be calculated as

D D RT

6� �R0
: (E.81)

This is referred to as the Stokes-Einstein equation. However it does not give a good
approximation for a real solution, therefore we can modify it as

D D RT

6� �R0
.1C 1:5�1 C � � � / (E.82)

where �1 is the volume fraction of the solute. Details can be found in Chap. 5,
Cussler (1997).

E.6.3 Diffusion Coefficient of Solute without Inter-molecular
Interaction

For the non-ideal solution of two elements the chemical potential can be written as

�1 D �01 CRT ln 	1x1 ' �01 CRT ln 	1c1 � RT ln 	1c2: (E.83)

Let the velocity of the solute be given by (E.77):

v1 D � 1

f
r�1 D � D0

RT
r�1 (E.84)
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where D0 is a constant. Differentiating (E.83), we obtain the flux of the diffusing
concentration as

qm1 D c1v1 D �c1D0

�rc1
c1

C r	1
	1

�

D �D0

�

1C @ ln 	1
@ ln c1

�

rc1 (E.85)

This gives Fick’s law. Thus the diffusion coefficient can be evaluated as

D D D0

�

1C @ ln 	1
@ ln c1

�

: (E.86)

E.7 Diffusion Process in an Electrolyte Solution

We discuss the diffusion behavior of an electrolyte solute in which the inter-
molecular interaction is strong.

E.7.1 Chemical Potential of Electrolyte Solute

In Sect. 3.2.4 the internal energy was treated as a sum of the mechanical and heat
energies. Here, in addition, we discuss the effect of an electrostatic field � on the
change of internal energy dUe under the molar description.

Let the electrical charge dQ move in the electrostatic field �, then the change of
internal energy is given by

dUe D � dQ: (E.87)

Note that � is the difference from the reference charge. If an amount of dn˛ of
ionic species ˛ with charge z˛ is added to the electrolyte solute, then the change of
internal energy is given as

dUe D z˛F� dn˛ .Š˛/

where F D 9:64853 � 104 C/mole is the Faraday constant. Thus the change of
chemical potential due to the above charge is accounted for as z˛F�;, thus the
chemical potential �˛ defined by (E.75) becomes

Q�˛ D �˛ C z˛F�: (E.88)

Q�˛ is referred to as electrochemical potential.

Note E.1 (Chemical potential in electrochemistry). In (E.88) the chemical potential
is represented as the sum of the chemical potential�˛ and the change of electrostatic
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energy z˛F �; however, this is a conventional treatment. In view of the physical sit-
uation and measurability, the contribution of these two phenomena to the chemical
potential cannot be separated; since most of the electrochemical phenomena can be
expressed by (E.88), we will conventionally use it here.

Since thermodynamic quantities such as the activity and activity coefficient for
ionized species, give no physical background, they must be related to the original
species by electrical neutrality. Let 1 mole of electrolyte A be ionized into �C mole
of cations with charge zC and �� mole of anions with charge z�; then, from the
electroneutrality principle we have

�CzC C ��z� D 0: (E.89)

The chemical potential �A of the electrolyte A (electroneutral) consists of the
sum of two ionized ions; however, assuming a constant charge in the solution, the
electrostatic terms z˛F� are canceled out, and we have

�A D �C Q�C C �� Q�� D �C�C C ����; �0A D �C�0C C ���0�: (E.90)

Let the chemical potential be written by (E.75), then the chemical potential �A and
activity aA of the species A can be calculated as

�A D �C.�0C CRT ln aC/C ��.�0� CRT ln a�/ D �0A CRT ln aA (E.91)

aA D a
�C
C a��� : (E.92)

Let the molar fractions of electrolyte A, cation and anion be xA; xC; x�, respec-
tively, giving

xC D �CxA; x� D ��xA:

Set � D �CC�� to obtain the activity aA as

aA D �
�
�C
C ����

� �
	
�C
C 	���

�
x�A (E.93)

where 	C and 	� are the activity coefficients of the cation and anion, respectively.
The mean activity a˙, mean activity coefficient 	˙ and mean ionic molar fraction
x˙ of the electrolyte A are defined by

a˙ D .aA/
1=� ; 	˙ D �

	
�C
C 	���

�1=�
; x˙ D �

�
�C
C ����

�1=�
xA; (E.94)

and (E.93) can be written as
a˙ D 	˙x˙ (E.95)

�
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E.7.2 Electrostatic Field due to Distributed Ions and Activity
Coefficient: Debye–Hückel Theory

The electrostatic field � must be known in order to identify the electrochemical
potential; however, this is almost impossible. In order to avoid this difficulty, in
electrochemical engineering the electrostatic field is determined by assuming the
distribution of ions (Tamamushi 1991).

Let the concentration number n˛ (i.e., the number of species per unit volume) of
the ion ˛ yield Boltzmann’s distribution1:

n˛ D n0˛ exp

�

� z˛e�

kBT

�

(E.96)

where n0˛ is the number concentration at � D 0, e D 1:60217733 � 1019 C is
the elementary charge and kB is Boltzmann’s constant. The charge due to n˛ is
�˛ D z˛en˛ , and the charge � at a point p can be given by summing up all the
distributed charges:

� D
X

˛

�˛ D
X

˛

z˛e n
0
˛ exp

�

� z˛e�

kBT

�

: (E.97)

Let E be the electric field. Since r ^E D 0 for the electrostatic field, we have
the electromagnetic potential � such that E D �r� (recalling r ^ r� 	 0). Let
the electric flux density be D D "E (" D "0"r ; " the dielectric constant, "0 the
dielectric constant in vacuum, "r the relative dielectric constant), then the principle
of conservation of charge (i.e., Coulomb’s law) r �D D � gives

�� D ��
"

(E.98)

(� D r � r is Laplace’s operator). Assuming that the electrostatic energy is
significantly lower than the heat energy (z˛e�=kBT 
 1), a Taylor expansion can
be applied to the r.h.s. of (E.98):

�e
"

X

˛

z˛en
0
˛ exp

�

� z˛e�

kBT

�

' �e
"

X

˛

z˛n
0
˛

�

1 � z˛e�

kBT

�

D e2

"kBT

X

˛

n0˛z2˛�:

Here we apply the electroneutrality principle and set
P

˛ z˛en0˛ D 0. Then (E.98) is
approximated as

1It is an assumption that each ion is a point charge and the distribution occurs according to
the Boltzmann rule. Note that the number concentration n˛ is related to the volume molar
concentration c˛ shown in Table 3.1 as n˛DNA c˛ , where NA is the Avogadro’s number.
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�� D �2� (E.99)

�2 D e2

"kBT

X

˛

n0˛z2˛ D 2N 2
Ae

2

"RT
I; I D 1

2

X

˛

c˛z2˛; c˛ D n0˛
NA

(E.100)

where ��1 is the Debye radius and I is the ionic strength.
Let us consider a spherical polar coordinate system around the charge �. In this

system the differential equation (E.99) becomes

1

r2
d

dr

�

r2
d�

dr

�

D �2�: (E.101)

If � ! 0 as r ! 0, the solution of (E.101) is given by

� D A
e��r

r

where A is a constant. Substituting this into (E.98) and (E.99), we obtain

� D �A"�2 e��r

r
: (E.102)

Let the mean ionic diameter be a and assume that no other ion can come into the
space inside the radius a=2, then from the electroneutrality principle we obtain

Z 1

a

4�r2� dr D �z˛e:

Next, substituting the above result in (E.102), we calculate A as

A D z˛e

4�"
� e�a

1C �a
:

The electrostatic potential � is then obtained as

�.r/ D z˛e

4�"
� e�a

1C �a

e��r

r
: (E.103)

In the dilute solution, �a
1, therefore � is given by

�.r/ D z˛e

4�"
� e��r

r
: (E.104)

This potential involves the following electric potential, which is the effect of the
central ion ˛:
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�˛.r/ D z˛e

4�"
� 1
r
; (E.105)

and we exclude this to obtain the remaining part

�r.r/ D �.r/� �˛.r/ D � z˛e

4�"
� 1 � e��r

r
(E.106)

as the outer potential, which is the effect of the ions distributed outside of the central
charge. If r
��1, the outer potential becomes

�r.r/ D � z˛e�

4�"
: (E.107)

This is obtained as r ! 0 for the r.h.s. of (E.106).
Let us evaluate the activity coefficient by using the Debye-Hückel theory: Recall

that the excess chemical potential �E
˛ is given by (E.76):

�E
˛ D RT ln 	˛: (E.108)

We can assume that this discrepancy from the ideal solution is mainly caused by
the electrostatic interaction between ions. Let the molar fraction of ionic species
˛ with charge z˛ be x˛ , the internal energy of the single ion be ue.x˛/, and
the internal energy at the molar fraction zero (i.e., infinitely dilute condition) be
ue.x˛ D 0/D u0e . Then we have

�E
˛ D NA

�
ue.x˛/� u0e

�
(E.109)

where NA is Avogadro’s number. When one ionic particle of species ˛ is added, the
internal energy is calculated by using the electric potential � of (E.104) as

ue.x˛/ D
Z z˛e

0

� dQ

whereQ D z˛e. On the other hand, in the case of infinite dilution, �r D 0, therefore
we have

u0e D
Z z˛e

0

�˛ dQ:

Thus �E
˛ can be evaluated as

�E
˛ D NA

Z z˛e

0

�r dQ: (E.110)

That is, the excess chemical potential can be estimated as the effect of the outer
potential.

Substituting (E.107) into (E.110) and integrating, we have
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�E
˛ D �NA z2˛e

2�

8�"
; (E.111)

and we obtain ln 	˛ from (E.108):

ln 	˛ D � z2˛e
2�

8�"kBT
D �A z2˛

p
I ; A D .2NA/

1=2e3

8�."kB/3=2
� 1

T 3=2
(E.112)

where (E.100) is used. From this equation, the mean ionic activity coefficient 	˙ of
a strong electrolyte solution with a charge z1 of cations and a charge z2 of anions
can be calculated as

ln 	˙ D �Ajzaz2j
p
I : (E.113)

For a dilute solution of a strong electrolyte, this gives the limiting Debye–Hückel
law.

The results (E.112) and (E.113) are calculated using the approximated potential
(E.104). This approximation can be improved if we apply (E.103) in which the
assumption of a dilute solution is avoided, giving the following results:

ln 	˛ D � A z2˛
p
I

1C Ba
p
I
; ln 	˙ D � Ajzaz2j

p
I

1C Ba
p
I
; B D

�
2e2L

kB"

�1=2
1p
T
:

(E.114)

E.7.3 Diffusion of Ionic Species in an Electrolyte Solution

As shown in Sects. E.6.2 and E.6.3, the diffusion property of an electrically neutral
species can be denoted by the gradient of the chemical potential. Similarly, the
transport and diffusion of ionic species in an electrolyte solution are designated
by the gradient of the electrochemical potential (E.88).

Recall that the coefficient f of (E.77) represents the viscous drag. The inverse
u D 1=f may give the mobility of the ionic species in the solution. Then the particle
velocity of species ˛ is defined by

v˛ D �u˛r Q�˛ D �u˛ .r�˛ C z˛Fr�/ : .Š˛/: (E.115)

The first and second terms of the r.h.s. of (E.115) represent diffusivity and electric
migration, respectively.

Let 1 mole of electrolyte A be ionized into �C mole of cations with a charge
of zC and �� mole of anions with a charge of z�, and both ions flow at the same
velocity vA. Then we have

vA D �uC .r�C C zCFr�/ D �u� .r�� C z�Fr�/ (E.116)
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where �C and �� are the chemical potentials of the cation and anion, respectively,
and uC and u� are their motilities. In these equations the electrophoresis terms are
eliminated and we use the electroneutrality principle �CzCC��z� D 0, which gives

vA D � uCu�
uCzC � u�z�

.zCr�� � z��C/ D � uCu�
uCzC � u�z�

r�A (E.117)

where we have used the relation

�A D �C�C C ����: (E.118)

On the other hand, let qmA be the flux of the diffusing concentration and DA be the
diffusivity. Then Fick’s law can be written as

qmA D cAvA D �DArcA .ŠA/; (E.119)

and together with (E.117) we obtain

DA D uCu�
uCzC � u�z�

cA
@�A

@cA
.ŠA/: (E.120)

E.7.4 Electric Conduction in an Electrolyte Solution

The mobility of ions in a solution implies the generation of an electric current. Let
i ˛ be the current density due to the mobility of ionic species ˛. Then we have

i ˛ D z˛Fv˛ D �z˛Fc˛u˛r Q�˛ D i dif
˛ C i mig

˛ ; (E.121)

i dif
˛ D �z˛Fc˛u˛r�˛; i mig

˛ D �z2˛F
2c˛u˛r� (E.122)

where i dif
˛ and i mig

˛ correspond to the terms due to diffusion and electric migration,
respectively. By summing (E.121) the total current can be estimated as

i D
X

˛

i ˛: (E.123)

The electric field E is related to the current density i ˛ by

i ˛ D �˛E (E.124)

where �˛ is the conductivity of the ionic species ˛. Since for i mig
˛ we have E D

�r�, �˛ is given by
�˛ D z2˛F

2c˛u˛ .Š˛/: (E.125)
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The conductivity �˛ is a function of the concentration c˛ , and we define the molar
conductivity by

�˛ D �˛

c˛
D z2˛F

2u˛ .Š˛/ (E.126)

where the unit of the molar conductivity �˛ is S m2 mole�1. Thus for the partial
current (E.124) and for the total current we have

i ˛ D �˛E D �˛c˛E ; i D �E ; � D
X

˛

�˛ D
X

˛

�˛c˛ .Š˛/:

(E.127)
The ratio of the total current i in the solute to a partial current i ˛ of species ˛ is

referred to as the transport number or the Hittorf number:

i ˛ D t˛i ) t˛ D �˛c˛
P
�˛c˛

.Š˛/: (E.128)

For example, in a solution with solvent S in which one electrolyte solute A is
dissolved, the transport numbers of cation tC and of anion t� are given by

tC D �CcC
�CcC C ��c�

D �C=zC
�C=zC � ��=z�

;

t� D ��c�
�CcC C ��c�

D � ��=z�
�C=zC � ��=z�

(E.129)

because of the electrical neutrality zCcC Cz�c� D 0. The conductivities of solute
(electrolyte ACsolvent S) and of electrolyte A are

� D �S C �A; �A D cC�C C c���:

Let 1 mole of electrolyte A be ionized completely into �C mole of cations with
charge zC and �� mole of anions with charge z� (complete dissociation), then the
concentration of each ion is

cC D �CcA; c� D ��cA:

By applying the electroneutrality principle zC�C Cz��� D 0, the conductivity of
the completely dissociated solution is calculated as

�A D cA .�C�C C ����/ D �CzCcA
�
�C
zC

� ��
z�

�

: (E.130)

Thus the molar conductivity is

ƒA D �A

cA
D �CzC

�
�C
zC

� ��
z�

�

: (E.131)
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We next treat an incompletely dissociated solution due to, for example, the for-
mation of solvation shells because of ion-pairs. Let 1 mole of this weak electrolyte
MA be dissolved into �C mole of cations with a charge zC and �� mole of anions
with a charge z� under the dissociation constant K , and suppose that the solution
reaches a dissociation equilibrium. Then we have

MA • �CMzC C ��Mz�

.1 �K/cMA K.�C cMA/ K.�� cMA/:

Since the concentrations of cation and anion are cC D K.�C cMA/ and c� D
K.�� cMA/, respectively, the conductivity of the electrolyte MA is calculated as

�MA D K cMA .�C�C C ����/ D K �CzCcMA
�
�C
zC

� ��
z�

�

(E.132)

where from the electroneutrality principle K.zC�C/CK.z���/ D 0 ) zC�C C
z��� D 0. The molar conductivity is given by

ƒMA D �MA

cMA
D K �CzC

�
�C
zC

� ��
z�

�

: (E.133)

By using the molar conductivities �C; �� we can evaluate the diffusivityDA of
(E.120). The motilities uC; u� are related to the molar conductivity by

uC D �C=z2CF 2; u� D ��=z2�F 2;

then the diffusivity can be evaluated by measuring the molar conductivity as

DA D �C��
F 2zCz�.�Cz� � ��zC/

cA
@�A

@cA
.ŠA/: (E.134)

E.8 Chemical Equilibrium and the Equilibrium Constant

Let us denote the reaction formula under chemical equilibrium by the following
stoichiometric relation:

NX

˛D1
�˛X˛ D 0: (E.135)

The extent of reaction � is uniform as defined by (E.38), and it is written by

�˛d� D dn˛: (E.136)
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On the other hand, from (E.56) the Gibbs free energy G.P; T; n˛/ D P
�˛ n˛

represents the chemically induced energy. When the reaction reaches chemical
equilibrium, it has apparently ceased because the forward reaction is equal to the
backward reaction, and the Gibbs free energyG attains a minimum:

dG D
X

˛

�˛ dn˛ D 0: (E.137)

Substituting (E.136) into (E.137) and eliminating d�, we obtain

X

˛

�˛ �˛ D 0: (E.138)

In a solution, as shown by (E.75), the chemical potential is represented as
�˛.P; T; a˛/ D �0˛.P; T /CRT ln a˛ . We substitute this into (E.138), and obtain
the standard Gibbs free energy in the reaction,�G�, as

�G� D
X

˛

�˛ �
0
˛ D �RT

X

˛

ln a�˛˛ D �RT ln
Y

˛
a�˛˛ (E.139)

where
Q
˛ a

�˛
˛ D a�1˛ � a�2˛ � a�3˛ � � � . Then the equilibrium constant K is defined by

K 	 e��G�=RT D
Y

˛
a�˛˛ : (E.140)

As given in (E.57),�G� D �H��T .�Se/�, therefore we have

K D e��H�=RT e.�S
e/�=R: (E.141)

If the solution is dilute, 	˛ D 1)a˛ D 	˛x˛ Dx˛ , and using (E.140) the equilib-
rium constant becomes

K D
Y

˛
x�˛˛ (E.142)

These relations are known as the Law of Mass Action.2

The chemical potential defined by (E.70) and (E.72) can be employed for treating
the process of the reaction of a gas, but we will not discuss it here.

2It is understood from (E.142) that the equilibrium constant K gives the relation between the mass
before the reaction and the mass after the reaction. For example, if the reaction

A C B • C

is of the first order (�˛ D1) for every element, using (E.142) we obtain

K D ŒC�

ŒA�ŒB�
:
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E.9 Phenomenological Theory of Non-equilibrium Chemical
Reaction Processes

In terms of modern quantum chemistry, a reaction is a complex process related
to bonding and debonding of electron clouds. It is not possible to write this
reaction using a simple formula, and phenomenological descriptions are commonly
used that correspond to each chemical process. In this Section we summarize the
phenomenological reaction theory (see, e.g., Seki 1997, pp. 322–331).

E.9.1 Reaction Velocity and Order of Reaction

As in the previous section, the stoichiometric relation (E.135) and the extent of
reaction � given by (E.136) are used. As described in (E.39) the reaction rate w is
denoted by using � as

w D d�

dt
: (E.143)

Let the molar concentration of species X˛ be ŒX˛�, then the reaction rate of a non-
equilibrium reaction is commonly and phenomenologically represented by

w D 1

�˛

d ŒX˛�

dt
D k

Y

˛
ŒX˛�

p˛ ; p D
X

˛
p˛ (E.144)

where p˛ is the order of reaction of species X˛ and p is the overall order of
reaction. In (E.144) k is the reaction rate constant, which generally depends on
temperature (described later). As implied by (E.144) the equation of reaction is
generally nonlinear.

Example E.1 (The simplest first order reaction). Consider the simplest reaction
equation

A �! B (E.145)

where the overall order of reaction is unity. Let the molar concentration of reactant
A consumed by this reaction at a time t be x, and the initial amount of A be a. Then
the concentration of A at time t is .a�x/, and the amount of reaction product B is x.
Since the reaction is of order one, the differential equation giving the concentration
of A is

� d.a � x/
dt

D dx

dt
D k.a � x/: (E.146)

Solving this under the initial condition x.t D 0/ D a, we obtain the concentration
of A as

ŒA� D a � x D ae�kt : (E.147)
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The time required for the concentration of reactant A to become half is referred
to as the half-life denoted as t1=2. The half-life of the above reaction is t1=2 D ln 2=k
which is independent of the initial concentration. �

Example E.2 (Second-order reaction). Suppose that a second-order reaction is
given by the following reaction equation:

A C B �! C: (E.148)

Let the molar concentration of reactant A at time t be x. The initial concentrations
of A and B are a and b, respectively. At time t they becomes .a�x/ and .b�x/.
Then the equation of the overall reaction of order two (each reaction order is one,
both for A and B) can be written as

dx

dt
D k.a � x/.b � x/: (E.149)

If the initial concentrations of A and B are the same (a D b), the solution of
(E.149) is obtained as

1

a � x
� 1

a
D kt: (E.150)

The half-life is t1=2 D 1=kt which is inversely proportional to the initial concentra-
tion.

If the initial concentration of A is far less than that of B (a
b), we have b�x'b
since x never exceeds a and b�x. Thus (E.149) is approximated as

dx

dt
' kb.a � x/ D k0.a � x/; k0 D kb: (E.151)

Note that this is of the same form as the first order reaction equation (E.146). k0 is
referred to as the pseudo-first order rate constant. �

E.9.2 Elementary Reaction and Complex Reaction

Chemical reactions are, in general, complex combinations of simple elementary
reactions. The molecular number of reactants of the elementary reaction, which are
given as the l.h.s. terms of a reaction formula is one, two and three, and these are
called unimolecular, bimolecular and termolecular reactions, respectively. The order
of reaction is one, two and three corresponding to each case. It is not always true
that the reaction of order one is the unimolecular reaction, and this is not always
true similarly for other cases of the reaction order.

Example E.3 (Unimolecular reaction with two elementary processes). Consider the
following two elementary processes in a unimolecular reaction:
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A
k1�! B

B
k2�! C

(E.152)

where k1 and k2 are the reaction rate constants for each elementary reaction. Let the
amount of substance of A consumed until time t be x, and the initial concentration
be a. As shown in Example E.1 the concentration of the first elementary process is
given by

ŒA� D a � x D a e�k1t ; (E.153)

and if the concentration of B is denoted as yD[B], the balance of mass of B for both
processes is given by

dy

dt
D k1.a � x/ � k2y:

Substituting (E.153) into this gives the differential equation with respect to the
concentration y:

dy

dt
C k2y D k1a e

�k1t : (E.154)

Since the initial condition is y D 0, the solution of (E.154) for the case k1 ¤ k2 is
obtained as

y D ak1

k2 � k1

�
e�k1t � e�k2t � : (E.155)

y.t/ reaches the maximum when tmax D ln.k1=k2/=.k1 � k2/. Note that the
concentration zD[C] of the substance C is calculated by xCyCz D a.

If k1 � k2, the first process is rate-determining, and if k2 � k1, the second is
rate-determining. �

Example E.4 (Reaction producing an intermediate). Suppose that two elementary
processes of reactions produce an intermediate C under an equilibrium reaction:

A C B
k1•
k�1

C
k2�! D (E.156)

where the reaction rate constants of the forward reaction and of the backward
reaction for the first reaction are k1 and k�1, respectively, and the reaction rate
constant of the second reaction is k2.

The intermediate C is produced constantly, which gives the condition

dŒC�

dt
D k1ŒA�ŒB� � k�1ŒC� � k2ŒC� D 0:

Thus we have

ŒC� D KŒA�ŒB�; K D ŒC�

ŒA�ŒB�
D k1

k�1 C k2
(E.157)
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where K is the equilibrium constant. On the other hand, from the second reaction
we have

dŒD�

dt
D k2ŒC� D kŒA�ŒB�; k D k2 K D k1k2

k�1 C k2
: (E.158)

The order of the overall reaction to produce D from A and B is two, and its reaction
rate constant is k D k2 K . �

Example E.5 (Enzyme reaction). In biochemistry the enzyme reaction is important,
and it is represented in a similar manner as in Example E.4. Let an enzyme be E, a
substrate be S, an intermediate complex be ES, and a product be P, then the reaction
system can be written by

S C E
k1•
k�1

ES
k2�! E C P: (E.159)

This is referred to as the Michaelis-Menten structure. All the reaction equations of
this system can be represented by

dŒS�

dt
D �k1ŒS�ŒE�C k�1ŒES�; (E.160)

dŒE�

dt
D �k1ŒS�ŒE�C .k�1 C k2/ŒES�; (E.161)

dŒP�

dt
D k2ŒES�; (E.162)

dŒES�

dt
D k1ŒS�ŒE� � .k�1 C k2/ŒES� D 0: (E.163)

In (E.163), we have assumed that the intermediate complex is produced by an
equilibrium reaction. From (E.163) we obtain

ŒES� D KŒE�ŒS�; K D ŒES�

ŒE�ŒS�
D k1

k�1 C k2
: (E.164)

From the view point of the overall reaction, we define the reaction velocity as v D
dŒP�=dt D �dŒS�=dt . Then using (E.160) and (E.164) we have

v D �dŒS�
dt

D dŒP�

dt
D
�
k1

K
C k�1

�

ŒES�: (E.165)

Since the enzyme is a type of catalyst, the amount of substance is not changed
before or after the reaction. Let [E]0 be the initial amount of substance of the
enzyme, so that

ŒE�C ŒES� D ŒE�0 D constant: (E.166)
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Substituting (E.164) into (E.166), we obtain

ŒE� D ŒE�0
1CKŒS�

: (E.167)

We substitute (E.167) into (E.165), and finally the reaction rate of Michaelis-Menten
structure is determined as

v D �dŒS�
dt

D dŒP�

dt
D k2ŒE�0ŒS�

KM C ŒS�
; KM D k�1 C k2

k1
: (E.168)

This is referred to as the Michaelis-Menten equation, and KM is the Michaelis
constant.

In (E.168), let [S]! 1, then we have

v ! k2ŒE�0: (E.169)

This implies that in a region with a high concentration of the substrate S, the
resolution rate does not increase even if we increase the concentration of enzyme.

�

E.9.3 Temperature Dependence of Reaction Rate: Arrhenius
Equation

The reaction rate constant k is known to be temperature dependent, which is
determined experimentally by

k D Ae�Ea=RT (E.170)

where R is the universal gas constant, A is referred to as the frequency factor, Ea is
the activation energy, corresponding to the energy gap between the transition state
and the final product state. The result (E.170) is known as the Arrhenius equation.
Note that in this process the reaction starts with the original state, passes to the
transition state and reaches the product state. In Fig. E.4 the change of potential
energy is schematically illustrated according to the reaction extent. In the sense of
molecular statistics, the reaction extent signifies the extent of atomic rearrangement
of the reaction system.

Taking a natural logarithm of (E.170), we obtain

ln k D lnA � Ea

RT
: (E.171)
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Fig. E.4 Reaction
coordinate: reaction extent
and change of potential
energy

Fig. E.5 Arrhenius plot

Thus from the results of an experiment, we plot ln k versus 1=T to obtain A as the
intercept of the ordinate, andEa from the slope (Arrhenius plot: Fig. E.5). Note that
the molecular-based interpretation of k is given by the transition state theory.

E.9.4 Transition State Theory

The process shown in Example E.4, where the intermediate is produced under
the equilibrium state, is strongly related to the transition state theory, and the
intermediate corresponds to the activated complex of the transition state theory.

Consider a bimolecular reaction to produce P from the reactants A and B
through the transition state in which the activated complex AB
, corresponding to
an intermediate, is generated (the notation 
 implies the transition state):

A C B
K


• AB

k
�! P: (E.172)

The reaction ACB•AB
 is under equilibrium, and we set the equilibrium
constant as K
. From (E.157) we have
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K
 D ŒAB
�

ŒA�ŒB�
: (E.173)

The lifetime of the activated complex AB
 is relatively short (less than 10�13 s),
therefore we can regard ACB!P as one process and estimate its reaction rate
constant k as

A C B
k�! P: (E.174)

Let the reaction rate constant of AB
!P be k
, then the production rate of P can be
written as

dŒP�

dt
D kŒA�ŒB� D k
ŒAB
�: (E.175)

From (E.158) we have
k D k
 K
: (E.176)

Recalling (E.141) and (E.142), the equilibrium constantK
 is represented using the
standard Gibbs free energy in the reaction�G�
 of the transition state, the standard
enthalpy of reaction�H�
 and the standard entropy of the reaction .�Se/�
 as

K
 D e��G�
=RT D e��H�
=RT e.�S
e/�
=R: (E.177)

Based on the discussions of the molecular path in the space of potential energy,
Eyring showed that the reaction rate constant k
 is obtained as

k
 D kB T

h
(E.178)

(details are found in Chap. 4 of Glasstone et al. 1941; Barrow 1996, Sect. 16.6).
Here kB D R=NA is Boltzmann’s constant, and h D 6:63 � 10�34 J�s is Planck’s
constant. Thus the reaction rate constant of (E.176) is represented as

k D �
kB T

h
e��G�
=RT D

�

�
kB T

h
e.�S

e/�
=R

�

e��H�
=RT : (E.179)

Here the transmission coefficient � is introduced because of the uncertainty of
reaction (�<1).
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Dissipative energy law, 88
Distribution coefficient, 165, 177
Divergence theorem, 292
Drained test, 196
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Freundlich, 181
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Fourier basis, 313
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molar description, 340
Gibbs-Helmholtz relation, 117
Gibbs’ phase rule, 118
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Green’s theorem, 292

Hagen-Poiseulle flow, 170
Hardening law, 68
Hardening model

anisotropic, 69
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kinematic, 69

Hardening parameter, 68, 73
Hardening rule, 203, 204
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Heat capacity under constant volume, 104
Heat conduction

equation, 104
problem, 334

Heat engine, 319
Heat flux, 88, 89
Heat of reaction, 346
Heat supply, 88
Helmholtz free energy, 102, 106, 119

molar description, 340
Helmholtz relation, 117
Hereditary integral, 56
Hess’s law, 343
Hittorf number, 363
Homogeneous function, 75, 108
Homogenization analysis, 3, 207

porous media flow, 213
Hookean solid, 51
Hvoslev surface, 196
Hydraulic conductivity, 186
Hydrostatic axis, 50
Hyperbolic PDE, 150
Hyperelastic material, 102
Hyperelastic, finite strain, 107

Incompressibility condition, 30
Incompressible, 56

Inertial frame, 9
Initial strain, 52
Initial stress, 52
Inner product space, 302
Integrability, 100

condition, 297
Intensive variable, 318
Internal dissipation, 334
Internal energy, 99, 118

molar description, 340
per unit mass, 89
reversible, 88

Interpolation, 151
functions, 151

Invariant, 47
Isolated system, 318, 331, 333

Jacobian, 25
Jump, 28

Kelvin-Voigt model, 61
Kinematic viscosity, 108
Kozeny-Carman formula, 174
Kronecker’s delta, 284

Lagrangian description, 13
Lagrangian equation of motion, 35
Lagrangian multiplier method, 146
Lagrangian spin, 45
Lagrangian strain, 20
Lagrangian strong form, 147
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Langmuir, 178
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Laplace transformation, 59
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Left form, 14
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Legendre transformation, 98
Linear momentum, 30
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for stress, 68
Logarithmic creep law, 67
Lower convected rate, 42



382 Index

Macro-phenomenological approach, 2
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Mass conservation law, 30
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Mass-energy flux, 317
Mass flux, 126
Material time derivative, 13
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Maxwell’s relations, 116
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Michaelis-Menten structure, 369
Micro-inhomogeneous material, 1
Microscale equation, 210, 246

Stokes’ flow, 217
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Microscale Stokes’ equation, 235
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Molecular dynamics, 2
Molecular partition function, 325
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Moment of tensor, 47
Monotonicity, 99
Multiscale porous medium, 230

Nanson’s formula, 27
Navier’s equation, 53
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Nernst-Planck theorem, 334
Newtonian mechanics, 9
Newton’s second law, 30
Nominal stress, 34

rate, 37
Nonequilibrium adsorption isotherm

Freundlich, 182
Langmuir, 182

Norm, 48
Normalized measure of Cauchy stress, 38
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Norton’s power law, 67

Objectivity, 41
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